Reputation: 3057
What is the most efficient way to sort two numpy matrices in parallel, row by row? A toy example:
sort this alpha:
a = [['c', 'b', 'e', 'd'],
['a', 'd', 'b', 'e']]
then, sort this in parallel to a:
b = [['1', '2', '3', '4'],
['2', '1', '4', '3']]
Result after sorting:
a = [['b', 'c', 'd', 'e'],
['a', 'b', 'd', 'e']]
b = [['2', '1', '4', '3'],
['2', '4', '1', '3']]
In my real case, a
and b
are large, 2D matrices of the same size.
If I use idx = a.argsort()
, I obtain the indices to sort each row of a. Can these be applied to b in one step? b = b[idx]
is not working.
Upvotes: 2
Views: 392
Reputation: 221584
You can use advanced indexing
-
idxx = np.arange(a.shape[0])[:,None],a.argsort(1)
a_out = a[idxx]
b_out = b[idxx]
Sample run -
In [75]: a
Out[75]:
array([['b', 'c', 'd', 'e'],
['a', 'b', 'd', 'e']],
dtype='|S1')
In [76]: b
Out[76]:
array([['2', '1', '4', '3'],
['2', '4', '1', '3']],
dtype='|S1')
In [77]: a_out
Out[77]:
array([['b', 'c', 'd', 'e'],
['a', 'b', 'd', 'e']],
dtype='|S1')
In [78]: b_out
Out[78]:
array([['2', '1', '4', '3'],
['2', '4', '1', '3']],
dtype='|S1')
Upvotes: 3
Reputation: 4893
Try this one
Python 3.4.3 (default, Sep 14 2016, 12:36:27)
[GCC 4.8.4] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = ['c', 'b', 'e', 'd']
>>> b = [1, 2, 3, 4 ]
>>> a,b=zip(*sorted(zip(a, b)))
>>> a
('b', 'c', 'd', 'e')
>>> b
(2, 1, 4, 3)
>>>
Upvotes: 0