Reputation: 2997
This project really is a source of questions for me.
I already learned about polymorphic recursion and I understand why it is a special case and therefore F# needs full type annotations.
For regular functions I might need some fiddeling but usually get it right. Now I'm trying to adapt a (working) basic toSeq
to a more specialized finger tree, but can't.
My feeling is that the use of the computation expression has something to do with it. This is the condensed working version:
module ThisWorks =
module Node =
type Node<'a> =
| Node2 of 'a * 'a
| Node3 of 'a * 'a * 'a
let toList = function
| Node2(a, b) -> [a; b]
| Node3(a, b, c) -> [a; b; c]
module Digit =
type Digit<'a> =
| One of 'a
| Two of 'a * 'a
| Three of 'a * 'a * 'a
| Four of 'a * 'a * 'a * 'a
let toList = function
| One a -> [a]
| Two(a, b) -> [a; b]
| Three(a, b, c) -> [a; b; c]
| Four(a, b, c, d) -> [a; b; c; d]
module FingerTree =
open Node
open Digit
type FingerTree<'a> =
| Empty
| Single of 'a
| Deep of Digit<'a> * Lazy<FingerTree<Node<'a>>> * Digit<'a>
let rec toSeq<'a> (tree:FingerTree<'a>) : seq<'a> = seq {
match tree with
| Single single ->
yield single
| Deep(prefix, Lazy deeper, suffix) ->
yield! prefix |> Digit.toList
yield! deeper |> toSeq |> Seq.collect Node.toList
yield! suffix |> Digit.toList
| Empty -> ()
}
The one I don't manage to get to compile is this:
module ThisDoesnt =
module Monoids =
type IMonoid<'m> =
abstract Zero:'m
abstract Plus:'m -> 'm
type IMeasured<'m when 'm :> IMonoid<'m>> =
abstract Measure:'m
type Size(value) =
new() = Size 0
member __.Value = value
interface IMonoid<Size> with
member __.Zero = Size()
member __.Plus rhs = Size(value + rhs.Value)
type Value<'a> =
| Value of 'a
interface IMeasured<Size> with
member __.Measure = Size 1
open Monoids
module Node =
type Node<'m, 'a when 'm :> IMonoid<'m>> =
| Node2 of 'm * 'a * 'a
| Node3 of 'm * 'a * 'a * 'a
let toList = function
| Node2(_, a, b) -> [a; b]
| Node3(_, a, b, c) -> [a; b; c]
module Digit =
type Digit<'m, 'a when 'm :> IMonoid<'m>> =
| One of 'a
| Two of 'a * 'a
| Three of 'a * 'a * 'a
| Four of 'a * 'a * 'a * 'a
let toList = function
| One a -> [a]
| Two(a, b) -> [a; b]
| Three(a, b, c) -> [a; b; c]
| Four(a, b, c, d) -> [a; b; c; d]
module FingerTree =
open Node
open Digit
type FingerTree<'m, 'a when 'm :> IMonoid<'m>> =
| Empty
| Single of 'a
| Deep of 'm * Digit<'m, 'a> * Lazy<FingerTree<'m, Node<'m, 'a>>> * Digit<'m, 'a>
let unpack (Value v) = v
let rec toSeq<'a> (tree:FingerTree<Size, Value<'a>>) : seq<'a> = seq {
match tree with
| Single(Value single) ->
yield single
| Deep(_, prefix, Lazy deeper, suffix) ->
yield! prefix |> Digit.toList |> List.map unpack
#if ITERATE
for (Value deep) in toSeq deeper do
^^^^^
yield deep
#else
yield! deeper |> toSeq |> Seq.collect (Node.toList >> List.map unpack)
^^^^^
#endif
yield! suffix |> Digit.toList |> List.map unpack
| Empty -> ()
}
The error message I get says
Error Type mismatch. Expecting a
FingerTree<Size,Node<Size,Value<'a>>> -> 'b
but given a
FingerTree<Size,Value<'c>> -> seq<'c>
The type 'Node<Size,Value<'a>>' does not match the type 'Value<'b>'
and the squiggles underline the recursive call of toSeq
.
I know that the “deeper” type is encapsulated in a Node
and in the working code I just unpack it afterwards. But here the compiler trips already before I get the chance to unpack. Trying a for (Value deep) in toSeq deeper do yield deep
has the same problem.
I already have a way out, namely to use the Not true, trying that yields a very similar error message.toSeq
of the “base” Tree
and Seq.map unpack
afterwards.
I'm curious what makes this code break and how it could be fixed.
Upvotes: 1
Views: 188
Reputation: 55184
The compiler's error message seems clear to me: toSeq
is applicable only to values of type FingerTree<Size, Value<'a>>
for some 'a
, but you're trying to call it on a value of type FingerTree<Size,Node<Size,Value<'a>>>
instead, which is not compatible. There's nothing specific to polymorphic recursion or sequence expressions, these types just don't match.
Instead, it seems like it would be much simpler to make toSeq
more generic by taking an input of type FingerTree<Size, 'a>
(without any reference to Value
), which would enable the recursive call you want. Then you can easily derive the more specific function you actually want by composing the more general toSeq
with Seq.map unpack
.
Upvotes: 3