Reputation: 18830
I have two data frames one with a userId, and gender and another data frame that has online activities of these users.
First Data Frame (df1)
userId, gender
001, F
002, M
003, F
004, M
005, M
006, M
Second data frame (df2)
userId, itemClicked, ItemBought, date
001, 123182, 123212, 02/02/2016
003, 234256, 123182, 05/02/2016
005, 986834, 234256, 04/19/2016
004, 787663, 787663, 05/12/2016
020, 465738, 465738, 03/20/2016
004, 787223, 787663, 07/12/2016
I want to add gender column to the second data frame by looking up the first data frame based on the userId. df2 might have multiple rows per user since its a click data where same user may have click multiple items.
This is very easy to do in MySql but I am trying to figure out to do it in pandas.
for index, row in df2.iterrows():
user_id = row['userId']
if user_id in df1['userId']:
t = df1.loc[df1['userId'] == user_id]
pdb.set_trace()
Is this the pandas way to so such a task?
Upvotes: 4
Views: 7899
Reputation: 772
You can try this:
for index, row in df1.iterrows():
for ind,r in df2.iterrows():
if r['userId']==row['userId']:
df2.set_value(ind,'Gender',row['gender'])
break
Upvotes: 0
Reputation: 863531
print (df1)
userId gender
0 1 F
1 2 M
2 3 F
3 4 M
4 5 M
5 6 M
print (df2)
userId itemClicked ItemBought date
0 1 123182 123212 02/02/2016
1 3 234256 123182 05/02/2016
2 5 986834 234256 04/19/2016
3 4 787663 787663 05/12/2016
4 20 465738 465738 03/20/2016
5 4 787223 787663 07/12/2016
You can use map
:
df2['gender'] = df2.userId.map(df1.set_index('userId')['gender'].to_dict())
print (df2)
userId itemClicked ItemBought date gender
0 1 123182 123212 02/02/2016 F
1 3 234256 123182 05/02/2016 F
2 5 986834 234256 04/19/2016 M
3 4 787663 787663 05/12/2016 M
4 20 465738 465738 03/20/2016 NaN
5 4 787223 787663 07/12/2016 M
Another solution with merge
and left join, parameter on
can be omit if only column gender
is same in both DataFrames:
df = pd.merge(df2, df1, how='left')
print (df)
userId itemClicked ItemBought date gender
0 1 123182 123212 02/02/2016 F
1 3 234256 123182 05/02/2016 F
2 5 986834 234256 04/19/2016 M
3 4 787663 787663 05/12/2016 M
4 20 465738 465738 03/20/2016 NaN
5 4 787223 787663 07/12/2016 M
Timings:
#len(df2) = 600k
df2 = pd.concat([df2]*100000).reset_index(drop=True)
def f(df1,df2):
df2['gender'] = df2.userId.map(df1.set_index('userId')['gender'].to_dict())
return df2
In [43]: %timeit f(df1,df2)
10 loops, best of 3: 34.2 ms per loop
In [44]: %timeit (pd.merge(df2, df1, how='left'))
10 loops, best of 3: 102 ms per loop
Upvotes: 11