Reputation: 61
I have obtained the means and sigmas of 3d Gaussian distribution, then I want to plot the 3d distribution with python code, and obtain the distribution figure.
Upvotes: 5
Views: 18779
Reputation: 76
Another example without using scipi:
import numpy as np
import matplotlib.pyplot as plt
ax = plt.axes(projection="3d")
mesh_size=100
max=mesh_size**2
xyz = np.zeros((3,max))
nx, ny = (mesh_size,mesh_size)
x = np.linspace(-1, 1, nx)
y = np.linspace(-1, 1, ny)
xv, yv = np.meshgrid(x, y)
xyz[0]=xv.reshape(max,)
xyz[1]=yv.reshape(max,)
xyz[2]=np.exp(-(xyz[0]**2+xyz[1]**2))
ax.scatter(xyz[0],xyz[1],xyz[2])
ax.set_title("3D Plot")
plt.show()
Upvotes: 0
Reputation: 103
This is based on documentation of mpl_toolkits and an answer on SO based on scipy multinormal pdf:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.stats import multivariate_normal
x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]
# Need an (N, 2) array of (x, y) pairs.
xy = np.column_stack([x.flat, y.flat])
mu = np.array([0.0, 0.0])
sigma = np.array([.5, .5])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)
# Reshape back to a (30, 30) grid.
z = z.reshape(x.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x,y,z)
#ax.plot_wireframe(x,y,z)
plt.show()
reference:-
Upvotes: 8