Reputation: 1093
I've seen this kind of error a good deal recently:
Error:
Tactic failure: setoid rewrite failed: Unable to satisfy the following constraints:
UNDEFINED EVARS:
?X1700==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r}
?X1701==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(equiv ==>
?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) (sm c)] (internal placeholder) {?p}
?X1705==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r0}
?X1706==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r1}
?X1707==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) sg_op] (internal placeholder) {?p0}
?X1708==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} (- sm c mon_unit)] (internal placeholder) {?p1}
?X1710==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r2}
?X1711==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==> flip impl) equiv] (internal placeholder) {?p2}
?X1712==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} mon_unit] (internal placeholder) {?p3}
.
What is this error trying to tell me? For reference, I most recently saw this during my work on the following lemma:
From MathClasses.interfaces Require Import
abstract_algebra vectorspace canonical_names.
From MathClasses.theory Require Import groups.
Lemma mult_munit `{Module R M} : forall c : R, sm c mon_unit = mon_unit.
intros.
rewrite <- right_identity.
assert (intermediate : mon_unit = sm c mon_unit & - sm c mon_unit).
{
rewrite right_inverse; reflexivity.
}
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
assert (forall x y : M, x = y -> x & sm c mon_unit = y & sm c mon_unit).
{
intros.
rewrite H0.
reflexivity.
}
rewrite right_identity.
I often see this while working on proofs with the math-classes library.
Upvotes: 5
Views: 1073
Reputation: 1093
As it turns out, this is a strange quirk indeed: the answer lies in the fact that the Proper
instance I used only referenced sm
explicitly, without using the dot notation (·
). When I change it to the notation that Anton used above, it works just fine. I will make a pull request to math-classes promptly.
Edit: A good explanation was provided on this github issue: https://github.com/c-corn/corn/issues/35
Upvotes: 1
Reputation: 15414
The error message gives us a hint:
|- Proper (equiv ==> ...
.
The rewrite fails because the scalar_mult
function (its notation is ·
) lacks one very important property: it is not Proper
.
A Proper
function is a function which respects equivalence -- remember everything in the Math-Classes library is defined up to equivalence, even =
is a notation for equiv
, not eq
.
More formally, a (unary) function f
is proper if for any equivalent x
and x'
(x = x'
in Math-Classes parlance), images of x
and x'
are equivalent too: f x = f x'
.
We need this Proper
property to be able to rewrite x
to x'
when x
is not a "free-standing" variable, but f
is applied to it.
One way to fix the error is to add an additional field to the definition of Module
typeclass:
sm_proper :> Proper ((=) ==> (=) ==> (=)) (·)
The above says that (·)
is a binary function, which respects equivalence for both of its parameters.
Like this
Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·) (* new! *)
}.
E.g. SemiGroup
has an analogous field for &
:
Class SemiGroup {Aop: SgOp A} : Prop :=
{ sg_setoid :> Setoid A
; sg_ass :> Associative (&)
; sg_op_proper :> Proper ((=) ==> (=) ==> (=)) (&) }.
After that amendment everything should work:
Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.
Qed.
I have to add there is another way to prove the lemma, but Coq somehow can't find an instance of LeftCancellation
typeclass without a nudge (obviously this law holds in every group and MathClasses.theory.groups
is imported):
intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation. (* ! *)
apply LeftCancellation_instance_0. (* this is ugly, but Coq doesn't use this instance, defined in MathClasses.theory.groups *)
rewrite <- distribute_l.
now rewrite !right_identity.
Here is the full development to play with:
From MathClasses.interfaces
Require Import abstract_algebra orders.
From MathClasses.theory
Require Import groups.
(** Scalar multiplication function class *)
Class ScalarMult K V := scalar_mult: K → V → V.
Instance: Params (@scalar_mult) 3.
Infix "·" := scalar_mult (at level 50) : mc_scope.
Notation "(·)" := scalar_mult (only parsing) : mc_scope.
Notation "( x ·)" := (scalar_mult x) (only parsing) : mc_scope.
Notation "(· x )" := (λ y, y · x) (only parsing) : mc_scope.
(** The inproduct function class *)
Class Inproduct K V := inprod : V → V → K.
Instance: Params (@inprod) 3.
Notation "⟨ u , v ⟩" := (inprod u v) (at level 51) : mc_scope.
Notation "⟨ u , ⟩" := (λ v, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "⟨ , v ⟩" := (λ u, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "x ⊥ y" := (⟨x,y⟩ = 0) (at level 70) : mc_scope.
(** The norm function class *)
Class Norm K V := norm : V → K.
Instance: Params (@norm) 2.
Notation "∥ L ∥" := (norm L) (at level 50) : mc_scope.
Notation "∥·∥" := norm (only parsing) : mc_scope.
(** Let [M] be an R-Module. *)
Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·)
}.
Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.
(* alternative proof, which doesn't quite work *)
Restart.
intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation.
apply LeftCancellation_instance_0.
rewrite <- distribute_l.
now rewrite !right_identity.
Qed.
Upvotes: 4