Reputation: 1495
My input is:
Col1 Col2 Col3 Col4 Col5
0 1 Y A PQR 56
1 1 Y A XYZ 2
2 1 Y A DEF 20
3 2 Y B PQR 18
4 2 Y B XYZ 24
5 2 Y B DEF 11
6 3 Y C PQR 20
7 3 Y C XYZ 4
8 3 Y C DEF 18
9 3 Y C HHH 23
My output I want is:
Col1 Col2 Col3 PQR XYZ DEF HHH
0 1 Y A 56 2 20 NaN
1 2 Y B 18 24 11 NaN
2 3 Y C 20 4 18 23.0
However, when I do the below:
output = input.pivot_table(index='Col1',columns='Col4',values='Col5')
I get:
Col1 PQR XYZ DEF HHH
1 56 2 20 NaN
2 18 24 11 NaN
3 20 4 18 23.0
Where Col1 is now the index
Which isn't the whole thing - so I try and apply:
output = output.merge(input,how='left',left_index=True,right_on='Col1')
That just gives me absolute garbage
Thoughts pls?
Upvotes: 3
Views: 289
Reputation: 294488
df.groupby(['Col1', 'Col2', 'Col3', 'Col4']).Col5.mean().unstack() \
.rename_axis(None, 1).reset_index()
Upvotes: 3
Reputation: 863166
I think you need add Col2
and Col3
to parameter index
:
output = input.pivot_table(index=['Col1', 'Col2','Col3'],columns='Col4',values='Col5')
.reset_index()
print (output)
Col4 Col1 Col2 Col3 DEF HHH PQR XYZ
0 1 Y A 20.0 NaN 56.0 2.0
1 2 Y B 11.0 NaN 18.0 24.0
2 3 Y C 18.0 23.0 20.0 4.0
Upvotes: 4