Reputation: 1828
If I want to concatenate two matrices A
and B
, I would do
using Eigen::MatrixXd;
const MatrixXd A(n, p);
const MatrixXd B(n, q);
MatrixXd X(n, p+q);
X << A, B;
Now if n
, p
, q
are large, defining X
in this way would mean creating copies of A
and B
. Is it possible to define X
as an Eigen::Ref<MatrixXd>
instead?
Thanks.
Upvotes: 3
Views: 1635
Reputation: 967
I expanded ggael's answer to Array
types, vertical concatenation, and more than two arguments:
#include <iostream>
#include <Eigen/Core>
namespace EigenCustom
{
using namespace Eigen;
constexpr Index dynamicOrSum( const Index& a, const Index& b ){
return a == Dynamic || b == Dynamic ? Dynamic : a + b;
}
enum class Direction { horizontal, vertical };
template<Direction direction, typename Arg1, typename Arg2>
struct ConcatHelper {
static_assert( std::is_same_v<
typename Arg1::Scalar, typename Arg2::Scalar
> );
using Scalar = typename Arg1::Scalar;
using D = Direction;
static constexpr Index
RowsAtCompileTime { direction == D::horizontal ?
Arg1::RowsAtCompileTime :
dynamicOrSum( Arg1::RowsAtCompileTime, Arg2::RowsAtCompileTime )
},
ColsAtCompileTime { direction == D::horizontal ?
dynamicOrSum( Arg1::ColsAtCompileTime, Arg2::ColsAtCompileTime ) :
Arg1::ColsAtCompileTime
},
MaxRowsAtCompileTime { direction == D::horizontal ?
Arg1::MaxRowsAtCompileTime :
dynamicOrSum( Arg1::MaxRowsAtCompileTime, Arg2::MaxRowsAtCompileTime )
},
MaxColsAtCompileTime { direction == D::horizontal ?
dynamicOrSum( Arg1::MaxColsAtCompileTime, Arg2::MaxColsAtCompileTime ) :
Arg1::MaxColsAtCompileTime
};
static_assert(
(std::is_base_of_v<MatrixBase<Arg1>, Arg1> &&
std::is_base_of_v<MatrixBase<Arg2>, Arg2> ) ||
(std::is_base_of_v<ArrayBase<Arg1>, Arg1> &&
std::is_base_of_v<ArrayBase<Arg2>, Arg2> )
);
using DenseType = std::conditional_t<
std::is_base_of_v<MatrixBase<Arg1>, Arg1>,
Matrix<
Scalar, RowsAtCompileTime, ColsAtCompileTime,
ColMajor, MaxRowsAtCompileTime, MaxColsAtCompileTime
>,
Array<
Scalar, RowsAtCompileTime, ColsAtCompileTime,
ColMajor, MaxRowsAtCompileTime, MaxColsAtCompileTime
>
>;
};
template<Direction direction, typename Arg1, typename Arg2>
class ConcatFunctor
{
using Scalar = typename ConcatHelper<direction, Arg1, Arg2>::Scalar;
const typename Arg1::Nested m_mat1;
const typename Arg2::Nested m_mat2;
public:
ConcatFunctor(const Arg1& arg1, const Arg2& arg2)
: m_mat1(arg1), m_mat2(arg2)
{}
const Scalar operator() (Index row, Index col) const {
if constexpr (direction == Direction::horizontal){
if (col < m_mat1.cols())
return m_mat1(row,col);
return m_mat2(row, col - m_mat1.cols());
} else {
if (row < m_mat1.rows())
return m_mat1(row,col);
return m_mat2(row - m_mat1.rows(), col);
}
}
};
template<Direction direction, typename Arg1, typename Arg2>
using ConcatReturnType = CwiseNullaryOp<
ConcatFunctor<direction,Arg1,Arg2>,
typename ConcatHelper<direction,Arg1,Arg2>::DenseType
>;
template<Direction direction, typename Arg1, typename Arg2>
ConcatReturnType<direction, Arg1, Arg2>
concat(
const Eigen::DenseBase<Arg1>& arg1,
const Eigen::DenseBase<Arg2>& arg2
){
using DenseType = typename ConcatHelper<direction,Arg1,Arg2>::DenseType;
using D = Direction;
return DenseType::NullaryExpr(
direction == D::horizontal ? arg1.rows() : arg1.rows() + arg2.rows(),
direction == D::horizontal ? arg1.cols() + arg2.cols() : arg1.cols(),
ConcatFunctor<direction,Arg1,Arg2>( arg1.derived(), arg2.derived() )
);
}
template<Direction direction, typename Arg1, typename Arg2, typename ... Ts>
decltype(auto)
concat(
const Eigen::DenseBase<Arg1>& arg1,
const Eigen::DenseBase<Arg2>& arg2,
Ts&& ... rest
){
return concat<direction>(
concat<direction>(arg1, arg2),
std::forward<Ts>(rest) ...
);
}
template<typename Arg1, typename Arg2, typename ... Ts>
decltype(auto)
concat_horizontal(
const Eigen::DenseBase<Arg1>& arg1,
const Eigen::DenseBase<Arg2>& arg2,
Ts&& ... rest
){
return concat<Direction::horizontal>(
arg1, arg2, std::forward<Ts>(rest) ...
);
}
template<typename Arg1, typename Arg2, typename ... Ts>
decltype(auto)
concat_vertical(
const Eigen::DenseBase<Arg1>& arg1,
const Eigen::DenseBase<Arg2>& arg2,
Ts&& ... rest
){
return concat<Direction::vertical>(
arg1, arg2, std::forward<Ts>(rest) ...
);
}
} // namespace EigenCustom
int main()
{
using namespace Eigen;
using namespace EigenCustom;
MatrixXd mat(3, 3);
mat << 0, 1, 2, 3, 4, 5, 6, 7, 8;
auto example1 = concat_horizontal(mat,2*mat);
std::cout << "example1:\n" << example1 << '\n';
auto example2 = concat_horizontal(VectorXd::Ones(3),mat);
std::cout << "example2:\n" << example2 << '\n';
auto example3 = concat_vertical(mat,RowVectorXd::Zero(3));
std::cout << "example3:\n" << example3 << '\n';
ArrayXXi arr (2,2);
arr << 0, 1, 2, 3;
auto example4 = concat_vertical(arr,Array2i{4,5}.transpose());
std::cout << "example4:\n" << example4 << '\n';
/* concatenating more than two arguments */
auto example5 = concat_horizontal(mat, mat, mat);
std::cout << "example5:\n" << example5 << '\n';
using RowArray2i = Array<int, 1, 2>;
auto example6 = concat_vertical( arr, RowArray2i::Zero(), RowArray2i::Ones() );
std::cout << "example6:\n" << example6 << '\n';
return 0;
}
Upvotes: 0
Reputation: 15528
I'll add the C++14 version of @ggaels horizcat
as an answer. The implementation is a bit sloppy in that it does not consider the Eigen compile-time constants, but in return it's only a two-liner:
auto horizcat = [](auto expr1, auto expr2)
{
auto get = [expr1=std::move(expr1),expr2=std::move(expr2)](auto row, auto col)
{ return col<expr1.cols() ? expr1(row, col) : expr2(row, col - expr1.cols());};
return Eigen::Matrix<decltype(get(0,0)), Eigen::Dynamic, Eigen::Dynamic>::NullaryExpr(expr1.rows(), expr1.cols() + expr2.cols(), get);
};
int main()
{
Eigen::MatrixXd mat(3, 3);
mat << 0, 1, 2, 3, 4, 5, 6, 7, 8;
auto example1 = horizcat(mat,2*mat);
std::cout << example1 << std::endl;
auto example2 = horizcat(Eigen::MatrixXd::Identity(3,3), mat);
std::cout << example2 << std::endl;
return 0;
}
Note that the code is untested.
That should be appropriate for most applications. However, in case you're using compile-time matrix dimensions and require maximum performance, prefer ggaels answer. In all other cases, also prefer ggaels answer, because he is the developer of Eigen :-)
Upvotes: 1
Reputation: 29255
No, Ref
is not designed for that. We/You would need to define a new expression for that, that could be called Cat
. If you only need to concatenate two matrices horizontally, in Eigen 3.3, this can be implemented in less than a dozen of lines of code as a nullary expression, see some exemple there.
Edit: here is a self-contained example showing that one can mix matrices and expressions:
#include <iostream>
#include <Eigen/Core>
using namespace Eigen;
template<typename Arg1, typename Arg2>
struct horizcat_helper {
typedef Matrix<typename Arg1::Scalar,
Arg1::RowsAtCompileTime,
Arg1::ColsAtCompileTime==Dynamic || Arg2::ColsAtCompileTime==Dynamic
? Dynamic : Arg1::ColsAtCompileTime+Arg2::ColsAtCompileTime,
ColMajor,
Arg1::MaxRowsAtCompileTime,
Arg1::MaxColsAtCompileTime==Dynamic || Arg2::MaxColsAtCompileTime==Dynamic
? Dynamic : Arg1::MaxColsAtCompileTime+Arg2::MaxColsAtCompileTime> MatrixType;
};
template<typename Arg1, typename Arg2>
class horizcat_functor
{
const typename Arg1::Nested m_mat1;
const typename Arg2::Nested m_mat2;
public:
horizcat_functor(const Arg1& arg1, const Arg2& arg2)
: m_mat1(arg1), m_mat2(arg2)
{}
const typename Arg1::Scalar operator() (Index row, Index col) const {
if (col < m_mat1.cols())
return m_mat1(row,col);
return m_mat2(row, col - m_mat1.cols());
}
};
template <typename Arg1, typename Arg2>
CwiseNullaryOp<horizcat_functor<Arg1,Arg2>, typename horizcat_helper<Arg1,Arg2>::MatrixType>
horizcat(const Eigen::MatrixBase<Arg1>& arg1, const Eigen::MatrixBase<Arg2>& arg2)
{
typedef typename horizcat_helper<Arg1,Arg2>::MatrixType MatrixType;
return MatrixType::NullaryExpr(arg1.rows(), arg1.cols()+arg2.cols(),
horizcat_functor<Arg1,Arg2>(arg1.derived(),arg2.derived()));
}
int main()
{
MatrixXd mat(3, 3);
mat << 0, 1, 2, 3, 4, 5, 6, 7, 8;
auto example1 = horizcat(mat,2*mat);
std::cout << example1 << std::endl;
auto example2 = horizcat(VectorXd::Ones(3),mat);
std::cout << example2 << std::endl;
return 0;
}
Upvotes: 7