Reputation: 345
Note: I have this as a Dataframe in spark. This Time/Date values constitute a single column in the Dataframe.
Input:
04-NOV-16 03.36.13.000000000 PM
06-NOV-15 03.42.21.000000000 PM
05-NOV-15 03.32.05.000000000 PM
06-NOV-15 03.32.14.000000000 AM
Expected Output:
05-NOV-15 03.32.05.000000000 PM
06-NOV-15 03.32.14.000000000 AM
06-NOV-15 03.42.21.000000000 PM
04-NOV-16 03.36.13.000000000 PM
Upvotes: 7
Views: 30029
Reputation: 1525
You can also use sort function after casting the string to a timestamp:
df.sort(unix_timestamp(df("dateColumn"), "dd-MMM-yy hh.mm.ss.S a").cast("timestamp"))
.show(false)
Upvotes: 3
Reputation: 17872
As this format is not standard, you need to use the unix_timestamp function to parse the string and convert into a timestamp type:
import org.apache.spark.sql.functions._
// Example data
val df = Seq(
Tuple1("04-NOV-16 03.36.13.000000000 PM"),
Tuple1("06-NOV-15 03.42.21.000000000 PM"),
Tuple1("05-NOV-15 03.32.05.000000000 PM"),
Tuple1("06-NOV-15 03.32.14.000000000 AM")
).toDF("stringCol")
// Timestamp pattern found in string
val pattern = "dd-MMM-yy hh.mm.ss.S a"
// Creating new DataFrame and ordering
val newDF = df
.withColumn("timestampCol", unix_timestamp(df("stringCol"), pattern).cast("timestamp"))
.orderBy("timestampCol")
newDF.show(false)
Result:
+-------------------------------+---------------------+
|stringCol |timestampCol |
+-------------------------------+---------------------+
|05-NOV-15 03.32.05.000000000 PM|2015-11-05 15:32:05.0|
|06-NOV-15 03.32.14.000000000 AM|2015-11-06 03:32:14.0|
|06-NOV-15 03.42.21.000000000 PM|2015-11-06 15:42:21.0|
|04-NOV-16 03.36.13.000000000 PM|2016-11-04 15:36:13.0|
+-------------------------------+---------------------+
More about the unix_timestamp and other utility functions can be found here.
For building the timestamp format, one can refer to the SimpleDateFormatter docs
Edit 1: as said by pheeleeppoo, you could order directly by the expression, instead of creating a new column, assuming you want to keep only the string-typed column in your dataframe:
val newDF = df.orderBy(unix_timestamp(df("stringCol"), pattern).cast("timestamp"))
Edit 2: Please note that the precision of the unix_timestamp function is in seconds, so if the milliseconds are really important, an udf can be used:
def myUDF(p: String) = udf(
(value: String) => {
val dateFormat = new SimpleDateFormat(p)
val parsedDate = dateFormat.parse(value)
new java.sql.Timestamp(parsedDate.getTime())
}
)
val pattern = "dd-MMM-yy hh.mm.ss.S a"
val newDF = df.withColumn("timestampCol", myUDF(pattern)(df("stringCol"))).orderBy("timestampCol")
Upvotes: 20