Reputation: 305
I have some data in text file as shown below image(it's just a portion of whole data). What is best way to filter out keys?
{ u'chan': 5,
u'cls': 0,
u'codr': u'4/5',
u'data': u'ABfxqqqpVVVOAAA='
}
Upvotes: 1
Views: 130
Reputation: 880
For a series of files in the form of what you posted try
import csv
filenames=[...]
#open your output file in append mode
with open('output.csv','a+') as out:
outwriter = csv.writer(out,dialect='excel')
#write your headers
outwriter.writerow(['header1','header2','header3'])
#for every file
for fname in filenames:
with open(fname) as f:
#list that holds each row
csvlines=[]
#labels you wanna keep
keep=["u'data'","u'rssi'","u'timestamp'"]
lines=f.readlines()
print lines
#split at first : character
lines = map(lambda x:x.split(':',1),lines)
for line in lines:
if line[0].strip() in keep:
csvlines.append(line[1].strip())
#clean from unnecessary characters
csvlines=map(lambda x:x.replace("u'","").replace("'","").replace(",",""),csvlines)
#write it to csv and then reset it for the next file.
if(len(csvlines)==3):
print "writing"
print csvlines
outwriter.writerow(csvlines)
csvlines=[]
Upvotes: 0
Reputation: 2740
Assuming the sample data is one record of your data, you can use pandas to subset and export directly to an excel workbook.
import pandas as pd
df = pd.DataFrame({ u'chan': 5,
u'cls': 0,
u'codr': u'4/5',
u'data': u'ABfxqqqpVVVOAAA=',
u'datr': u'SF10BW125',
u'freq': u'912.9',
u'lsnr': u'-8.2',
u'mhdr': u'8007000002001900',
u'modu': u'LORA',
u'opts': u'',
u'port': 5,
u'rfch': 1,
u'rssi': -111,
u'seqn': 25,
u'size': 16,
u'timestamp': u'2016-11-17T09:51:44.406724Z',
u'tmst': 2477375724L},index=[0])
df = df[['data','chan','timestamp','rssi']]
oName = #Path to desired excel workbook
df.to_excel(oName,'Sheet1')
Upvotes: 1