Reputation: 14016
before you mark this as a duplicate please notice that I'm looking for a more general solution for arrays of arbitrary dimensions. I have read many posts here or in forums about making 2D or 3D arrays of integers but these are specific solutions for specific dimensions. I want a general solution for an array of any dimension. First I need to have a type of intlist as defined below:
typedef struct{
int l // length of the list
int * e // pointer to the first element of the array
}intlist;
this actually fills the gap in C for treating arrays just as pointers. using this type I can pass arrays to functions without worrying about loosing the size. then in the next step I want to have a mdintlist as multidimensional dynamically allocated arrays. the type definition should be something like this:
typedef struct Mdintlist{
intlist d // dimension of the array
/* second part */
}mdintlist;
there are several options for the second part. on option is that to have a pointer towards a mdintlist of lower dimension like
struct Mdintlist * c;
the other options is to use void pointers:
void * c;
I don't know how to continue it from here.
P.S. one solution could be to allocate just one block of memory and then call the elements using a function. However I would like to call the elements in array form. something like tmpmdintlist.c[1][2][3]...
Hope I have explained clearly what I want.
P.S. This is an ancient post, but for those who may end up here some of my efforts can be seen in the Cplus repo.
Upvotes: 2
Views: 123
Reputation: 3352
Well, if you separate the pointers and the array lengths, you end up with much less code.
int *one_dem_array;
size_t one_dem_count[1];
int **two_dem_array;
size_t two_dem_count[2];
int ***three_dem_array;
size_t three_dem_count[3];
This way you can still use your preferred notation.
int num_at_pos = three_dem_array[4][2][3];
Upvotes: 2
Reputation: 53006
You can't! you can only use the function option in c, because there is no way to alter the language semantics. In c++ however you can overload the []
operator, and even though I would never do such an ugly thing (x[1][2][3]
is alread y ugly, if you continue adding "dimensions" it gets really ugly), I think it would be possible.
Upvotes: 2