Yasir Arfat
Yasir Arfat

Reputation: 645

Timeout Exception in Apache-Spark during program Execution

I am running a Bash Script in MAC. This script calls a spark method written in Scala language for a large number of times. I am currently trying to call this spark method for 100,000 times using a for loop.

The code exits with the following exception after running a small number of iterations, around 3000 iterations.

org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [10 seconds]. This timeout is controlled by spark.executor.heartbeatInterval
    at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
    at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
    at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
    at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:102)
    at org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:518)
    at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply$mcV$sp(Executor.scala:547)
    at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:547)
    at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:547)
    at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1877)
    at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:547)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:304)

Exception in thread "dag-scheduler-event-loop" 16/11/22 13:37:32 WARN NioEventLoop: Unexpected exception in the selector loop.
java.lang.OutOfMemoryError: Java heap space
    at io.netty.util.internal.MpscLinkedQueue.offer(MpscLinkedQueue.java:126)
    at io.netty.util.internal.MpscLinkedQueue.add(MpscLinkedQueue.java:221)
    at io.netty.util.concurrent.SingleThreadEventExecutor.fetchFromScheduledTaskQueue(SingleThreadEventExecutor.java:259)
    at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:346)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
    at java.lang.Thread.run(Thread.java:745)
java.lang.OutOfMemoryError: Java heap space
    at java.util.regex.Pattern.compile(Pattern.java:1047)
    at java.lang.String.replace(String.java:2180)
    at org.apache.spark.util.Utils$.getFormattedClassName(Utils.scala:1728)
    at org.apache.spark.storage.RDDInfo$$anonfun$1.apply(RDDInfo.scala:57)
    at org.apache.spark.storage.RDDInfo$$anonfun$1.apply(RDDInfo.scala:57)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.storage.RDDInfo$.fromRdd(RDDInfo.scala:57)
    at org.apache.spark.scheduler.StageInfo$$anonfun$1.apply(StageInfo.scala:87)

Can someone help please, is this error being caused because of a large number of calls to spark method?

Upvotes: 17

Views: 61495

Answers (6)

0x5453
0x5453

Reputation: 13589

For posterity: I was getting similar errors, but changing memory/timeout settings was not helping at all.

In my case the problem was that somebody was calling socket.setdefaulttimeout in a library function that I was calling before creating the Spark session. setdefaulttimeout affected all new sockets created after that point, including the socket that Spark used to communicate with YARN, so that connection would time out unexpectedly.

Needless to say, don't do this.

Upvotes: 0

akl
akl

Reputation: 46

You are seeing this issue due to the executor memory. Try increasing the memory to (x 2) so the containers don't time out while waiting on the remaining containers.

Upvotes: 1

Sandeep Purohit
Sandeep Purohit

Reputation: 3692

The above stack trace is also shown java heap space its OOM error so once try to increase the memory and run it and regarding timeout its rpc timeout so you can set spark.network.timeout with timeout value according to your need...

Upvotes: 5

Luckylukee
Luckylukee

Reputation: 595

Just increase the spark.executor.heartbeatInterval to 20s, the error says that.

Upvotes: 1

Prem S
Prem S

Reputation: 237

pls increase the executer memory so that OOM will go away else make chnage in code so that your RDD wont have big memory foot print.

--executer-memory = 3G

Upvotes: 1

Ram Ghadiyaram
Ram Ghadiyaram

Reputation: 29155

Its RpcTimeoutException .. so spark.network.timeout (spark.rpc.askTimeout) could be tuned with larger-than-default values in order to handle complex workload. You can start with these values and adjust accordingly to your workloads. Please see latest

spark.network.timeout 120s Default timeout for all network interactions. This config will be used in place of spark.core.connection.ack.wait.timeout, spark.storage.blockManagerSlaveTimeoutMs, spark.shuffle.io.connectionTimeout, spark.rpc.askTimeout or spark.rpc.lookupTimeout if they are not configured.

Also consider increasing executor memory i.e spark.executor.memory and most imp thing is review your code, to check whether that is candidate for further optimization.

Solution : value 600 is based on requirement

set by SparkConf: conf.set("spark.network.timeout", "600s")
set by spark-defaults.conf: spark.network.timeout 600s
set when calling spark-submit: --conf spark.network.timeout=600s

Upvotes: 22

Related Questions