Reputation: 4062
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
auto lamb = [](int x) {return x + 1; }; // Works.
auto t = std::make_tuple(1, 2, 3); // Does not work.
c[i] = a[i] + b[i];
}
NVCC has lambdas at least, but std::make_tuple
fails to compile. Are tuples not allowed in the current version of Cuda?
Upvotes: 5
Views: 3538
Reputation: 131525
Indeed, CUDA itself does not offer a device-side-capable version of std::tuple
. However, I have a full tuple implementation as part of my cuda-kat
library (still very much under initial development at the time of writing). thrust's tuple class is limited in the following senses:
get()
)The tuple implementation in cuda-kat
is an adaptation of the EASTL tuple, which in turn is an adaptation of the LLVM project's libc++ tuple. Unlike the EASTL's, however, it is C++11-compatible, so you don't have to have the absolute latest CUDA version. It is possible to extract only the tuple class from the library with oh, I think 4 files or so, if you need just that.
Upvotes: 2
Reputation: 3622
Support for the standard c++ library on device side is problematic for CUDA as the standard library does not have the necessary __host__
or __device__
annotations.
That said, both clang and nvcc do have partial support for some functionality. Usually it's limited to constexpr functions that are considered to be __host__ __device__
if you pass --expt-relaxed-constexpr
to nvcc (or by default in clang). Clang also has a bit more support for standard math functions. Neither supports anything that relies on C++ runtime (except for memory allocation, printf and assert) as that does not exist on device side.
So, in short -- most of the standard C++ library is unusable on device side in CUDA, though things do slowly improve as more and more functions in the standard library become constexpr
.
Upvotes: 2
Reputation: 493
I've just tried this out and tuple metaprogramming with std:: (std::tuple, std::get, etc ...) will work in device code with C++14 and expt-relaxed-constexpr enabled (CUDA8+) during compilation (e.g. nvcc -std=c++14 xxxx.cu -o yyyyy --expt-relaxed-constexpr
) - CUDA 9 required for C++14, but basic std::tuple should work in CUDA 8 if you are limited to that. Thrust/tuple works but has some drawbacks: limited to 10 items and lacking in some of the std::tuple helper functions (e.g. std::tuple_cat). Because tuples and their related functions are compile-time, expt-relaxed-constexpr should enable your std::tuple to "just work".
#include <tuple>
__global__ void kernel()
{
auto t = std::make_tuple(1, 2, 3);
printf("%d\n",std::get<0>(t));
}
int main()
{
kernel<<<1,1>>>();
cudaDeviceSynchronize();
}
Upvotes: 4
Reputation: 4062
#include <thrust/tuple.h>
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
auto lamb = [](int x) {return x + 1; }; // Works.
auto t = thrust::make_tuple(1, 2, 3);
c[i] = a[i] + b[i];
}
I needed to get the ones from the Thrust library instead to make them work it seems. The above does compile.
Upvotes: 2