Reputation: 1658
I have this kind of list of strings with 9000 rows where each row is month/day/year:
10/30/2009
12/19/2009
4/13/2009
8/18/2007
7/17/2008
6/16/2009
1/14/2009
12/18/2007
9/14/2009
2/13/2006
3/25/2009
2/23/2007
I want convert it and only have the list with month/year if is it possible as dateformat, like this:
10/2009
12/2009
4/2009
8/2007
7/2008
6/2009
1/2009
12/2007
9/2009
2/2006
3/2009
2/2007
Upvotes: 4
Views: 28715
Reputation: 322
Or you could use a regular expression, if you prefer that kind of solution. This would solve your problem:
import re
res = re.sub(r"/\d\d?/", "/", s)
(Note that s
is the date string, either as separate date strings or a long string containing all dates, and that you have your result bound to res
.)
Upvotes: 1
Reputation: 863611
I think you can use first to_datetime
and then to_period
:
df.col = pd.to_datetime(df.col).dt.to_period('m')
print (df)
col
0 2009-10
1 2009-12
2 2009-04
3 2007-08
4 2008-07
5 2009-06
6 2009-01
7 2007-12
8 2009-09
9 2006-02
10 2009-03
11 2007-02
print (type(df.loc[0,'col']))
<class 'pandas._period.Period'>
Or strftime
:
df.col = pd.to_datetime(df.col).dt.strftime('%m/%Y')
print (df)
col
0 10/2009
1 12/2009
2 04/2009
3 08/2007
4 07/2008
5 06/2009
6 01/2009
7 12/2007
8 09/2009
9 02/2006
10 03/2009
11 02/2007
print (type(df.loc[0,'col']))
<class 'str'>
Or replace
by regex
:
df.col = df.col.str.replace('/.+/','/')
print (df)
col
0 10/2009
1 12/2009
2 4/2009
3 8/2007
4 7/2008
5 6/2009
6 1/2009
7 12/2007
8 9/2009
9 2/2006
10 3/2009
11 2/2007
print (type(df.loc[0,'col']))
<class 'str'>
Upvotes: 11
Reputation: 394409
You can use str.split
to build the strings:
In [32]:
df['date'] =df['date'].str.split('/').str[0] + '/' + df['date'].str.split('/').str[-1]
df
Out[32]:
date
0 10/2009
1 12/2009
2 4/2009
3 8/2007
4 7/2008
5 6/2009
6 1/2009
7 12/2007
8 9/2009
9 2/2006
10 3/2009
11 2/2007
Upvotes: 1