Reputation: 257
Suppose now I have a dataframe
with 2 columns: State and City.
Then I have a separate dict
with the two-letter acronym for each state. Now I want to add a third column to map state name with its two-letter acronym. What should I do in Python/Pandas? For instance the sample question is as follows:
import pandas as pd
a = pd.Series({'State': 'Ohio', 'City':'Cleveland'})
b = pd.Series({'State':'Illinois', 'City':'Chicago'})
c = pd.Series({'State':'Illinois', 'City':'Naperville'})
d = pd.Series({'State': 'Ohio', 'City':'Columbus'})
e = pd.Series({'State': 'Texas', 'City': 'Houston'})
f = pd.Series({'State': 'California', 'City': 'Los Angeles'})
g = pd.Series({'State': 'California', 'City': 'San Diego'})
state_city = pd.DataFrame([a,b,c,d,e,f,g])
state_2 = {'OH': 'Ohio','IL': 'Illinois','CA': 'California','TX': 'Texas'}
Now I have to map the column State in the df
state_city
using the dictionary of state_2
. The mapped df
state_city
should contain three columns: state
, city
, and state_2letter
.
The original dataset I had had multiple columns with nearly all US major cities.
Therefore it will be less efficient to do it manually. Is there any easy way to do it?
Upvotes: 2
Views: 13010
Reputation: 12515
For one, it's probably easier to store the key-value pairs like state name: abbreviation
in your dictionary, like this:
state_2 = {'Ohio': 'OH', 'Illinois': 'IL', 'California': 'CA', 'Texas': 'TX'}
You can achieve this easily:
state_2 = {state: abbrev for state, abbrev in state_2.items()}
Using pandas.DataFrame.map
:
>>> state_city['abbrev'] = state_city['State'].map(state_2)
>>> state_city
City State abbrev
0 Cleveland Ohio OH
1 Chicago Illinois IL
2 Naperville Illinois IL
3 Columbus Ohio OH
4 Houston Texas TX
5 Los Angeles California CA
6 San Diego California CA
Upvotes: 11
Reputation: 103
I do agree with @blacksite that the state_2
dictionary should map its values like that:
state_2 = {'Ohio': 'OH','Illinois': 'IL','California': 'CA','Texas': 'TX'}
Then using pandas.DataFrame.replace
state_city['state_2letter'] = state_city.State.replace(state_2)
state_city
|-|State |City |state_2letter|
|-|----- |------ |----------|
|0| Ohio | Cleveland | OH|
|1| Illinois | Chicago | IL|
|2| Illinois | Naperville | IL|
|3| Ohio | Columbus | OH|
|4| Texas | Houston | TX|
|5| California| Los Angeles | CA|
|6| California| San Diego | CA|
Upvotes: 1