Reputation: 5155
How do I convert a pandas index of strings to datetime format?
My dataframe df
is like this:
value
2015-09-25 00:46 71.925000
2015-09-25 00:47 71.625000
2015-09-25 00:48 71.333333
2015-09-25 00:49 64.571429
2015-09-25 00:50 72.285714
but the index is of type string, but I need it a datetime format because I get the error:
'Index' object has no attribute 'hour'
when using
df["A"] = df.index.hour
Upvotes: 133
Views: 350980
Reputation: 187
Doing
df.index = pd.to_datetime(df.index, errors='coerce')
the data type of the index has changed to
Upvotes: 4
Reputation: 29071
You could explicitly create a DatetimeIndex
when initializing the dataframe. Assuming your data is in string format
data = [
('2015-09-25 00:46', '71.925000'),
('2015-09-25 00:47', '71.625000'),
('2015-09-25 00:48', '71.333333'),
('2015-09-25 00:49', '64.571429'),
('2015-09-25 00:50', '72.285714'),
]
index, values = zip(*data)
frame = pd.DataFrame({
'values': values
}, index=pd.DatetimeIndex(index))
print(frame.index.minute)
Upvotes: 11
Reputation: 207
I just give other option for this question - you need to use '.dt' in your code:
import pandas as pd
df.index = pd.to_datetime(df.index)
#for get year
df.index.dt.year
#for get month
df.index.dt.month
#for get day
df.index.dt.day
#for get hour
df.index.dt.hour
#for get minute
df.index.dt.minute
Upvotes: 6
Reputation: 21878
It should work as expected. Try to run the following example.
import pandas as pd
import io
data = """value
"2015-09-25 00:46" 71.925000
"2015-09-25 00:47" 71.625000
"2015-09-25 00:48" 71.333333
"2015-09-25 00:49" 64.571429
"2015-09-25 00:50" 72.285714"""
df = pd.read_table(io.StringIO(data), delim_whitespace=True)
# Converting the index as date
df.index = pd.to_datetime(df.index)
# Extracting hour & minute
df['A'] = df.index.hour
df['B'] = df.index.minute
df
# value A B
# 2015-09-25 00:46:00 71.925000 0 46
# 2015-09-25 00:47:00 71.625000 0 47
# 2015-09-25 00:48:00 71.333333 0 48
# 2015-09-25 00:49:00 64.571429 0 49
# 2015-09-25 00:50:00 72.285714 0 50
Upvotes: 185