Reputation: 1023
I know this is a common error for PCA but I went through the solutions provided and its not working.
I followed: Error in svd(x, nu = 0) : 0 extent dimensions
Below is my code extract:
require(class)
set.seed(2095)
# dataset source:https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
normalize<-function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
dataset <- read.csv("data/kdd_data_10pc.csv", header = FALSE, sep = ",")
names <- read.csv("data/kdd_names.csv", header = FALSE , sep = ";")
names(dataset) <- sapply((1:nrow(names)),function(i) toString(names[i, 1]))
# extracting relevant features
dataset_extracted <- dataset[, c("src_bytes", "dest_bytes", "count", "dst_host_count", "dst_host_same_srv_rate", "dst_host_serror_rate", "label")]
head(dataset_extracted, 3)
log.kdd <-log(dataset_extracted[, 1:6])
kdd.label <- dataset_extracted[, 7]
kdd.pca <-prcomp(log.kdd,
center = TRUE,
scale. = TRUE)
Summary(dataset) output is as follow:
summary(dataset_extracted)
src_bytes dest_bytes count dst_host_count dst_host_same_srv_rate dst_host_serror_rate label
Min. : 0 Min. : 0 Min. : 0.0 Min. : 0.0 Min. :0.0000 Min. :0.0000 smurf. :280790
1st Qu.: 45 1st Qu.: 0 1st Qu.:117.0 1st Qu.:255.0 1st Qu.:0.4100 1st Qu.:0.0000 neptune.:107201
Median : 520 Median : 0 Median :510.0 Median :255.0 Median :1.0000 Median :0.0000 normal. : 97278
Mean : 3026 Mean : 869 Mean :332.3 Mean :232.5 Mean :0.7538 Mean :0.1768 back. : 2203
3rd Qu.: 1032 3rd Qu.: 0 3rd Qu.:511.0 3rd Qu.:255.0 3rd Qu.:1.0000 3rd Qu.:0.0000 satan. : 1589
Max. :693375640 Max. :5155468 Max. :511.0 Max. :255.0 Max. :1.0000 Max. :1.0000 ipsweep.: 1247
(Other) : 3713
Based on the summary none of the extracted columns minimum value are of any negative value.
I'm new to machine learning. Appreciate any help provided. The exact error shown was
Error in svd(x, nu = 0) : infinite or missing values in 'x'
Upvotes: 0
Views: 5440
Reputation:
You apply a log transformation to an object (dataset
) containing zero values. This will produce elements of negative infinity. Try using log1p()
instead.
Also don't forget to apply the standardisation you encode in the function normalize()
.
Also also, given the magnitude of some of the outliers, I'm not sure a log transformation will be sufficient - you may need to consider excluding some observations.
Upvotes: 1