tacqy2
tacqy2

Reputation: 309

Error with prediction - ROCR package (using probabilities)

I have used "rfe" function with svm to create a model with reduced features. Then I use "predict" on test data which outputs class labels (binary), 0 class probabilities, 1 class probabilities. I then tried using prediction function, in ROCR package, on predicted probabilities and true class labels but get the following error and am not sure why as the lengths of the 2 arrays are equal:

> pred_svm <- prediction(pred_svm_2class[,2], as.numeric(as.character(y)))
Error in prediction(pred_svm_2class[, 2], as.numeric(as.character(y))) : 
Number of predictions in each run must be equal to the number of labels for each run.

I have the code below and the input is here click me.It is a small dataset with binary classification, so code runs fast.

library("caret")
library("ROCR")
sensor6data_2class <- read.csv("/home/sensei/clustering/svm_2labels.csv")
sensor6data_2class <- within(sensor6data_2class, Class <- as.factor(Class))

set.seed("1298356")
inTrain_svm_2class <- createDataPartition(y = sensor6data_2class$Class, p = .75, list = FALSE)
training_svm_2class <- sensor6data_2class[inTrain_svm_2class,]
testing_svm_2class <- sensor6data_2class[-inTrain_svm_2class,]
trainX <- training_svm_2class[,1:20]
y <- training_svm_2class[,21]

ctrl_svm_2class <- rfeControl(functions = rfFuncs , method = "repeatedcv", number = 5, repeats = 2, allowParallel = TRUE)
model_train_svm_2class <- rfe(x = trainX, y = y, data = training_svm_2class, sizes = c(1:20), metric = "Accuracy", rfeControl = ctrl_svm_2class, method="svmRadial")

pred_svm_2class = predict(model_train_svm_2class, newdata=testing_svm_2class)
pred_svm <- prediction(pred_svm_2class[,2], y)

Thanks and appreciate your help.

Upvotes: 4

Views: 9471

Answers (1)

Vivek Kalyanarangan
Vivek Kalyanarangan

Reputation: 9081

This is because in the line

pred_svm <- prediction(pred_svm_2class[,2], y)

pred_svm_2class[,2] is the predictions on test data and y is the labels for training data. Just generate the labels for test in a separate variable like this

y_test <- testing_svm_2class[,21]

And now if you do

pred_svm <- prediction(pred_svm_2class[,2], y_test)

There will be no error. Full code below -

# install.packages("caret")
# install.packages("ROCR")
# install.packages("e1071")
# install.packages("randomForest")
library("caret")
library("ROCR")
sensor6data_2class <- read.csv("svm_2labels.csv")
sensor6data_2class <- within(sensor6data_2class, Class <- as.factor(Class))

set.seed("1298356")
inTrain_svm_2class <- createDataPartition(y = sensor6data_2class$Class, p = .75, list = FALSE)
training_svm_2class <- sensor6data_2class[inTrain_svm_2class,]
testing_svm_2class <- sensor6data_2class[-inTrain_svm_2class,]
trainX <- training_svm_2class[,1:20]
y <- training_svm_2class[,21]
y_test <- testing_svm_2class[,21]

ctrl_svm_2class <- rfeControl(functions = rfFuncs , method = "repeatedcv", number = 5, repeats = 2, allowParallel = TRUE)
model_train_svm_2class <- rfe(x = trainX, y = y, data = training_svm_2class, sizes = c(1:20), metric = "Accuracy", rfeControl = ctrl_svm_2class, method="svmRadial")

pred_svm_2class = predict(model_train_svm_2class, newdata=testing_svm_2class)
pred_svm <- prediction(pred_svm_2class[,2], y_test)

Upvotes: 6

Related Questions