Reputation: 713
This is a simple question, but I'm not sure what I did wrong.
df1 <- data.frame(
A = c(NA, 0.57, 0.60, 0.51),
B = c(NA, 0, 0.09,0.19),
C = c(0., 0.05, 0.07, 0.05),
D = c(0.23, 0.26, 0.23, 0.26)
)
View(df1)
# A B C D
# 1 NA NA 0.00 0.23
# 2 0.57 0.00 0.05 0.26
# 3 0.60 0.09 0.07 0.23
# 4 0.51 0.19 0.05 0.26
I need to get the sum of each column and divide by the number of rows in each column that are neither NA
nor 0.00
The result should be:
# A B C D
# 1 0.56 0.14 0.06 0.25
I tried df2 <- apply(df1, 2, function(x) colSums(df1, na.rm = T) /length(which(x !=0)))
but it returns a 4x4 matrix. I suspect the problem is with length(which(x !=0))
. Please advice.
Upvotes: 0
Views: 1559
Reputation: 23101
With dplyr:
df1 %>%
replace(is.na(.), 0) %>%
summarise_each(funs(round(sum(.)/sum(.!=0),2)))
# A B C D
# 1 0.56 0.14 0.06 0.24
Upvotes: 0
Reputation: 886938
We can do
round(colSums(df1, na.rm = TRUE)/colSums(df1!=0, na.rm=TRUE), 2)
# A B C D
# 0.56 0.14 0.06 0.24
Upvotes: 1