Reputation: 3075
I have a list of data frames, e.g.
df1 = data.frame(ID=c("id1", "id2", "id3"), A1 = c("A", "A", "B"), A2 = c("AA", "AA", "AA"))
df2 = data.frame(ID=c("id2", "id3", "id4"), A1 = c("B", "B", "B"), A2=c("BB", "BB", "BB"))
df3 = data.frame(ID=c("id1", "id2", "id3"), A1 = c("A", "A", "A"), A2 = c("AA", "BB", "BB"))
listDF = list(df1, df2, df3)
I am wondering if there is a good way to change the class from factor to character. This is what I have tried:
d <- lapply(listDF, function(x) sapply(x[,"A1", "A2"], as.character))
This code gives me the columns I want to change, but is there a way to just change the class and not have to re-append these new columns?
Upvotes: 5
Views: 2891
Reputation: 16836
With tidyverse
, you can use a combination of purrr
and across
inside mutate
to change particular columns in each dataframe in the list. Here, I use starts_with
, but you can also supply the names too (i.e., c(A1, A2)
).
library(tidyverse)
map(listDF, ~ .x %>%
mutate(across(starts_with("A"), as.character)))
Upvotes: 0
Reputation: 1
The list.update
function from rlist
package provides a handy alternative.
names(listDF) <- c("df1", "df2", "df3")
d <- list.update(listDF,A1 = as.factor(A1), A2 = as.factor(A2))
Upvotes: 0
Reputation: 886998
We can use data.table
lapply(listDF, function(df) setDT(df)[, (2:3) := lapply(.SD, as.character), .SDcols = 2:3])
Upvotes: 1
Reputation: 214927
mutate_at()
function from dplyr
package comes handy here:
library(dplyr)
d <- lapply(listDF, function(df) mutate_at(df, .cols = 2:3, as.character))
You can also pass the column names to .cols
parameter:
d <- lapply(listDF, function(df) mutate_at(df, .cols = c("A1", "A2"), as.character))
Or select the columns by regex:
# mutate columns whose names start with A
d <- lapply(listDF, function(df) mutate_at(df, vars(matches("^A")), as.character))
In base R, this could be:
d <- lapply(listDF, function(df) {df[c("A1", "A2")] <- lapply(df[c("A1", "A2")], as.character); df})
Upvotes: 5