Reputation: 33
I am attempting to create cold-start recommendations using the LightFM library in python. https://github.com/lyst/lightfm
This works as expected for collaborative filtering, without user and item features i.e:
from lightfm import LightFM
interaction_matrix
<322139x42715 sparse matrix of type '<type 'numpy.float32'>'
with 4571208 stored elements in COOrdinate format>
model = LightFM(no_components=50)
model.fit(interaction_matrix, epochs=1, num_threads=32)
predictions = model.predict(12, np.arange(250), num_threads=32)
This produces predictions fine. However when I add:
members_features, item_features
(<322139x2790 sparse matrix of type '<type 'numpy.float32'>'
with 19840665 stored elements in Compressed Sparse Row format>,
<42715x2790 sparse matrix of type '<type 'numpy.float32'>'
with 355006 stored elements in Compressed Sparse Row format>)
model2 = LightFM(no_components=100, loss='warp', item_alpha=0.001, user_alpha=0.001)
model2.fit(interaction_matrix, user_features=members_features, item_features=item_features, sample_weight=None, \
verbose=True, epochs=2, num_threads=32)
I get Nan's for the user and item embeddings.
model2.item_embeddings
array([[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
...,
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan]], dtype=float32)
Upvotes: 0
Views: 1188
Reputation: 889
You should try updating to LightFM 1.12 (via pip install lightfm==1.12
). This version fixes a number of numerical instability issues that may lead to the results you are seeing.
If you are interested in the gory details, you can have a look at this Github issue.
Upvotes: 1