Reputation: 1693
Using Spark I'm reading a csv and want to apply a function to a column on the csv. I have some code that works but it's very hacky. What is the proper way to do this?
My code
SparkContext().addPyFile("myfile.py")
spark = SparkSession\
.builder\
.appName("myApp")\
.getOrCreate()
from myfile import myFunction
df = spark.read.csv(sys.argv[1], header=True,
mode="DROPMALFORMED",)
a = df.rdd.map(lambda line: Row(id=line[0], user_id=line[1], message_id=line[2], message=myFunction(line[3]))).toDF()
I would like to be able to just call the function on the column name instead of mapping each row to line
and then calling the function on line[index]
.
I'm using Spark version 2.0.1
Upvotes: 28
Views: 36006
Reputation: 786
You can simply use User Defined Functions (udf
) combined with a withColumn
:
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
udf_myFunction = udf(myFunction, IntegerType()) # if the function returns an int
df = df.withColumn("message", udf_myFunction("_3")) #"_3" being the column name of the column you want to consider
This will add a new column to the dataframe df
containing the result of myFunction(line[3])
.
Upvotes: 48