Reputation: 4158
I have a dataframe with the following fields. For each Id, I have two records, that represent different latitude and longitudes. I'm trying to achieve a resultant dataframe that groups by current dataframe based on id and put its latitude and longitude into different fields.
I tried with the group by function but I do not get the intended results. Any help would be greatly appreciated.
Id StartTime StopTime Latitude Longitude
101 14:42:28 14:47:56 53.51 118.12
101 22:10:01 22:12:49 33.32 333.11
Result:
Id StartLat StartLong DestLat DestLong
101 53.51 118.12 33.32 333.11
Upvotes: 1
Views: 4023
Reputation: 863246
You can use groupby
with apply function for return flatten DataFrame
to Series
:
df = df.groupby('Id')['Latitude','Longitude'].apply(lambda x: pd.Series(x.values.ravel()))
df.columns = ['StartLat', 'StartLong', 'DestLat', 'DestLong']
df = df.reset_index()
print (df)
Id StartLat StartLong DestLat DestLong
0 101 53.51 118.12 33.32 333.11
If problem:
TypeError: Series.name must be a hashable type
try change Series
to DataFrame
, but then need unstack
with droplevel
:
df = df.groupby('Id')['Latitude','Longitude']
.apply(lambda x: pd.DataFrame(x.values.ravel()))
.unstack()
df.columns = df.columns.droplevel(0)
df.columns = ['StartLat', 'StartLong', 'DestLat', 'DestLong']
df = df.reset_index()
print (df)
Id StartLat StartLong DestLat DestLong
0 101 53.51 118.12 33.32 333.11
Upvotes: 1