Reputation: 55
Please could you show me example of input file for FDBSCAN in ELKI. I got error like this:
Task failed
de.lmu.ifi.dbs.elki.data.type.NoSupportedDataTypeException: No data type found satisfying: UncertainObject,field
Available types: DBID DoubleVector,dim=2
at de.lmu.ifi.dbs.elki.database.AbstractDatabase.getRelation(AbstractDatabase.java:126)
at de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.instantiate(FDBSCANNeighborPredicate.java:131)
at de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.run(GeneralizedDBSCAN.java:122)
at de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.run(GeneralizedDBSCAN.java:79)
at de.lmu.ifi.dbs.elki.workflow.AlgorithmStep.runAlgorithms(AlgorithmStep.java:105)
at de.lmu.ifi.dbs.elki.KDDTask.run(KDDTask.java:112)
at de.lmu.ifi.dbs.elki.application.KDDCLIApplication.run(KDDCLIApplication.java:61)
at [...]
Upvotes: 0
Views: 247
Reputation: 8715
FDBSCAN requires data of the type UncertainObject
, i.e. objects with uncertainty information.
If you simply load a CSV file, the data will be certain, and you cannot use uncertain clustering.
There are several ways of modeling uncertainty. These implement as filters in the typeconversions
package.
UncertainSplitFilter
can split a vector of length k*N into k possible instances, each of length N with uniform weight.WeightedUncertainSplitFilter
is similar, but every instance can also have a weight associated.UncertainifyFilter
can simulate uncertainty by e.g. assuming a Gaussian or Uniform distribution around the original vector.
UniformUncertainifier
(the U-Model, see Javadoc of UniformContinuousUncertainObject
)SimpleGaussianUncertainifier
(see Javadoc of SimpleGaussianContinuousUncertainObject
)UnweightedDiscreteUncertainifier
(BID Model, see Javadoc of WeightedDiscreteUncertainObject
)WeightedDiscreteUncertainifier
(as above)Upvotes: 1