Reputation: 4138
I'd like to convert the API call into a pandas
data frame
.
At the moment, the API is very unorganised and I'd like to incorporate pandas
to make it easier to read/edit/manipulate.
I have attempted the following:
r = requests.get('http://api.football-data.org/v1/competitions/398/teams')
x = r.json()
df = pd.read_json(x)
print df
But receive:
TypeError: Expected String or Unicode
Upvotes: 13
Views: 56622
Reputation: 5235
read_json
function expects a string. You are providing a JSON object (parsed using requests
library's json
method). What you need to do is to convert the object back to a string using json.dumps
method:
import json
r = requests.get('http://api.football-data.org/v1/competitions/398/teams')
x = r.json()
df = pd.read_json(json.dumps(x))
Or even better, just get the buffer from request object directly and do not convert it to an object.
r = requests.get('http://api.football-data.org/v1/competitions/398/teams')
df = pd.read_json(r.text)
Upvotes: 6
Reputation: 898
This simple solution worked for me (the api link in question is not accessible by me)
df=pd.read_json('https://api.coinmarketcap.com/v1/ticker/?limit=10')
df.head()
24h_volume_usd available_supply id last_updated \
0 12465900000 16812425 bitcoin 1516379664
1 4827670000 97080757 ethereum 1516379652
2 5091970000 38739142811 ripple 1516379641
3 862348000 16920150 bitcoin-cash 1516379657
4 678044000 25927070538 cardano 1516379659
market_cap_usd max_supply name percent_change_1h \
0 198285740450 2.100000e+07 Bitcoin 0.88
1 103477408544 NaN Ethereum 0.02
2 62593157388 1.000000e+11 Ripple -0.63
3 30726992400 2.100000e+07 Bitcoin Cash 0.41
4 17206681852 4.500000e+10 Cardano 0.56
percent_change_24h percent_change_7d price_btc price_usd rank \
0 -0.37 -15.41 1.000000 11794.000000 1
1 -0.92 -15.24 0.090786 1065.890000 2
2 -1.39 -20.53 0.000138 1.615760 3
3 -2.43 -29.81 0.154675 1816.000000 4
4 -4.15 -18.47 0.000057 0.663657 5
symbol total_supply
0 BTC 16812425
1 ETH 97080757
2 XRP 99993093880
3 BCH 16920150
4 ADA 31112483745
Upvotes: 4
Reputation: 917
pd.read_json
expects a string. However, r.json()
returns a dict object.
In your case, you should explore the structure of the returned JSON object by looking at x.keys()
. This will yield ['count', '_links', 'teams']
. You are probably interested in the 'teams' field.
As such, you should do the following:
r = requests.get('http://api.football-data.org/v1/competitions/398/teams')
x = r.json()
df = pd.DataFrame(x['teams'])
print df
Upvotes: 17