Reputation: 13
def test_n_jobs_parallel():
# Test to check the functioning of n_jobs parameter.
for kernel in kernels:
gpr1 = GaussianProcessRegressor(kernel=kernel, n_jobs=1,
n_restarts_optimizer=5).fit(X, y)
gpr2 = GaussianProcessRegressor(kernel=kernel, n_jobs=2,
n_restarts_optimizer=5).fit(X, y)
gpr3 = GaussianProcessRegressor(kernel=kernel, n_jobs=-1,
n_restarts_optimizer=5).fit(X, y)
y1, y1_cov = gpr1.predict(X, return_cov=True)
y2, y2_cov = gpr2.predict(X, return_cov=True)
y3, y3_cov = gpr3.predict(X, return_cov=True)
# Successfully passed tests
assert_almost_equal(y1, y2)
assert_almost_equal(y1, y3)
assert_almost_equal(y1_cov, y2_cov)
assert_almost_equal(y1_cov, y3_cov)
# Failing tests
assert_almost_equal(gpr1.alpha_, gpr2.alpha_)
assert_almost_equal(gpr1.alpha_, gpr3.alpha_)
assert_almost_equal(gpr1.log_marginal_likelihood_value_,
gpr2.log_marginal_likelihood_value_)
assert_almost_equal(gpr1.log_marginal_likelihood_value_,
gpr3.log_marginal_likelihood_value_)
I also tried decreasing the precision value (required decimal places). This problem is arising for few kernels only.
Upvotes: 1
Views: 94
Reputation: 916
Two things that I can think of that might be causing your problem:
I would try setting the random seed to be a constant and then retrying. If that doesn't work, would you mind sharing which kernels fail your tests?
(This is more of a comment, but my privileges aren't that high..)
Upvotes: 1