Reputation: 4537
Suppose I have an N-dimensional np.array (or just a list) and a list of N indices. What is the preferred/efficient way to index the array without using loops?
# 4D array with shape of (2, 3, 4, 5)
arr = np.random.random((2, 3, 4, 5))
index = [0, 2, 1, 3]
result = ??? # Equivalent to arr[0, 2, 1, 3]
Additionally, supplying only a 3D index the result should be an array of the last dimension.
index = [0, 2, 1]
result2 = ??? # Equivalent to arr[0, 2, 1]
Please note that I am not able to just index with the usual syntax because the implementation has to handle arrays of different shapes.
I am aware that NumPy supports indexing by an array but that behaves differently as it cherry-picks values from the array rather by indexing by dimension (https://docs.scipy.org/doc/numpy/user/basics.indexing.html).
Upvotes: 1
Views: 297
Reputation: 879471
Per the docs:
If one supplies to the index a tuple, the tuple will be interpreted as a list of indices.
Therefore, change index
to a tuple:
In [46]: np.allclose(arr[tuple([0,2,1])], arr[0,2,1])
Out[46]: True
In [47]: np.allclose(arr[tuple([0,2,1,3])], arr[0,2,1,3])
Out[47]: True
Upvotes: 3