Reputation: 565
I have a complicated Json File that looks like this:
{
"User A" : {
"Obj1" : {
"key1": "val1",
"key2": "val2",
"key3": "val3",
}
"Obj2" : {
"key1": "val1",
"key2": "val2",
"key3": "val3"
}
}
"User B" : {
"Obj1" : {
"key1": "val1",
"key2": "val2",
"key3": "val3",
"key4": "val4"
}
}
}
And I want to turn it into a dataframe that looks like this:
key1 key2 key3 key4
User A Obj1 val1 val2 val3 NaN
Obj2 val1 val2 val3 NaN
User B Obj1 val1 val2 val3 val4
Is this possible with pandas? If so, how can I manage to do it?
Upvotes: 3
Views: 640
Reputation: 862681
You can first read file to dict
:
with open('file.json') as data_file:
dd = json.load(data_file)
print(dd)
{'User B': {'Obj1': {'key2': 'val2', 'key4': 'val4', 'key1': 'val1', 'key3': 'val3'}},
'User A': {'Obj1': {'key2': 'val2', 'key1': 'val1', 'key3': 'val3'},
'Obj2': {'key2': 'val2', 'key1': 'val1', 'key3': 'val3'}}}
And then use dict comprehension
with concat
:
df = pd.concat({key:pd.DataFrame(dd[key]).T for key in dd.keys()})
print (df)
key1 key2 key3 key4
User A Obj1 val1 val2 val3 NaN
Obj2 val1 val2 val3 NaN
User B Obj1 val1 val2 val3 val4
Another solution with read_json
, but first need reshape by unstack
and remove NaN
rows by dropna
. Last need DataFrame.from_records
:
df = pd.read_json('file.json').unstack().dropna()
print (df)
User A Obj1 {'key2': 'val2', 'key1': 'val1', 'key3': 'val3'}
Obj2 {'key2': 'val2', 'key1': 'val1', 'key3': 'val3'}
User B Obj1 {'key2': 'val2', 'key4': 'val4', 'key1': 'val1...
dtype: object
df1 = pd.DataFrame.from_records(df.values.tolist())
print (df1)
key1 key2 key3 key4
0 val1 val2 val3 NaN
1 val1 val2 val3 NaN
2 val1 val2 val3 val4
df1 = pd.DataFrame.from_records(df.values.tolist(), index = df.index)
print (df1)
key1 key2 key3 key4
User A Obj1 val1 val2 val3 NaN
Obj2 val1 val2 val3 NaN
User B Obj1 val1 val2 val3 val4
Upvotes: 3