Reputation: 440
Let's assume i had a table of two columns A and B in a CSV File. I pick maximum value from column A [Max value = 100] and i need to return the respective value of column B [Return Value = AliExpress] using JavaRDD Operations without using DataFrames.
Input Table :
COLUMN A Column B
56 Walmart
72 Flipkart
96 Amazon
100 AliExpress
Output Table:
COLUMN A Column B
100 AliExpress
This is what i tried till now
SourceCode:
SparkConf conf = new SparkConf().setAppName("SparkCSVReader").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> diskfile = sc.textFile("/Users/apple/Downloads/Crash_Data_1.csv");
JavaRDD<String> date = diskfile.flatMap(f -> Arrays.asList(f.split(",")[1]));
From the above code i can fetch only one column data. Is there anyway to get two columns. Any suggestions. Thanks in advance.
Upvotes: 1
Views: 71
Reputation: 4623
Data:
COLUMN_A,Column_B
56,Walmart
72,Flipkart
96,Amazon
100,AliExpress
Creating df using Spark 2
val df = sqlContext.read.option("header", "true")
.option("inferSchema", "true")
.csv("filelocation")
df.show
import sqlContext.implicits._
import org.apache.spark.sql.functions._
Using Dataframe functions
df.orderBy(desc("COLUMN_A")).take(1).foreach(println)
OUTPUT:
[100,AliExpress]
Using RDD functions
df.rdd
.map(row => (row(0).toString.toInt, row(1)))
.sortByKey(false)
.take(1).foreach(println)
OUTPUT:
(100,AliExpress)
Upvotes: 0
Reputation: 4893
You can use either top
or takeOrdered
functions to achieve it.
rdd.top(1) //gives you top element in your RDD
Upvotes: 1