Reputation: 143
I have a data like that;
>> df
A B C
0 1 5 1
1 1 7 1
2 1 6 1
3 1 7 1
4 2 5 1
5 2 8 1
6 2 6 1
7 3 7 1
8 3 9 1
9 4 6 1
10 4 7 1
11 4 1 1
I want to take max and minimum values of the B column depending on the column A(For the each same value of column A, I want to find the min and max in column B) and want to write results on the original table. My code is:
df1 = df.groupby(['A']).B.transform(max)
df1 = df1.rename(columns={'B':'B_max'})
df2 = df.groupby.(['A']).B.transform(min)
df1 = df1.rename(columns={'B':'B_min'})
df3 = df.join(df1['B_max']).join(df2['B_min'])
This is the result.
A B C B_max B_min
0 1 5 1
1 1 7 1 7
2 1 6 1
3 1 4 1 4
4 2 5 1
5 2 8 1 8
6 2 6 1 6
7 3 7 1 7
8 3 9 1 9
9 4 6 1
10 4 7 1 7
11 4 1 1 1
But I want to table look like this;
A B C B_max B_min
0 1 5 1 7 4
1 1 7 1 7 4
2 1 6 1 7 4
3 1 4 1 7 4
4 2 5 1 8 6
5 2 8 1 8 6
6 2 6 1 8 6
7 3 7 1 9 7
8 3 9 1 9 7
9 4 6 1 7 1
10 4 7 1 7 1
11 4 1 1 7 1
interpret the code for the result to look like this
Upvotes: 2
Views: 1324
Reputation: 862591
I think you need only assign values to new columns, because transform
return Series
with same length as df
:
df = pd.DataFrame({
'A': [1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4],
'B': [5, 7, 6, 7, 5, 8, 6, 7, 9, 6, 7, 1],
'C': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]})
print (df)
A B C
0 1 5 1
1 1 7 1
2 1 6 1
3 1 7 1
4 2 5 1
5 2 8 1
6 2 6 1
7 3 7 1
8 3 9 1
9 4 6 1
10 4 7 1
11 4 1 1
df['B_max'] = df.groupby(['A']).B.transform(max)
df['B_min'] = df.groupby(['A']).B.transform(min)
print (df)
A B C B_max B_min
0 1 5 1 7 5
1 1 7 1 7 5
2 1 6 1 7 5
3 1 7 1 7 5
4 2 5 1 8 5
5 2 8 1 8 5
6 2 6 1 8 5
7 3 7 1 9 7
8 3 9 1 9 7
9 4 6 1 7 1
10 4 7 1 7 1
11 4 1 1 7 1
g = df.groupby('A').B
df['B_max'] = g.transform(max)
df['B_min'] = g.transform(min)
print (df)
A B C B_max B_min
0 1 5 1 7 5
1 1 7 1 7 5
2 1 6 1 7 5
3 1 7 1 7 5
4 2 5 1 8 5
5 2 8 1 8 5
6 2 6 1 8 5
7 3 7 1 9 7
8 3 9 1 9 7
9 4 6 1 7 1
10 4 7 1 7 1
11 4 1 1 7 1
Upvotes: 2