Reputation: 1943
How would you implement the equivalent to Java's unsigned right shift operator in Swift?
According to Java's documentation, the unsigned right shift operator ">>>" shifts a zero into the leftmost position, while the leftmost position after ">>" depends on sign extension.
So, for instance,
long s1 = (-7L >>> 16); // result is 281474976710655L
long s2 = (-7L >> 16); // result is -1
In order to implement this in Swift, I would take all the bits except the sign bit by doing something like,
let lsb = Int64.max + negativeNumber + 1
Notice that the number has to be negative! If you overflow the shift operator, the app crashes with EXC_BAD_INSTRUCTION, which it's not very nice... Also, I'm using Int64 on purpose. Because there's no bigger datatype, doing something like (1 << 63) would overflow the Int64 and also crash. So instead of doing ((1 << 63) - 1 + negativeNumber) in a bigger datatype, I wrote it as Int64.max + negativeNumber - 1.
Then, shift that positive number with the normal logical shift, and OR the bit from the sign in the first left bit after the sign.
let shifted = (lsb >> bits) | 0x4000000000000000
However, that doesn't give me the expected result,
((Int64.max - 7 + 1) >> 16) | 0x4000000000000000 // = 4611826755915743231
Not sure what I'm doing wrong... Also, would it be possible to name this operator '>>>' and extend Int64?
Edit: Adding here the solution from OOper below,
infix operator >>> : BitwiseShiftPrecedence
func >>> (lhs: Int64, rhs: Int64) -> Int64 {
return Int64(bitPattern: UInt64(bitPattern: lhs) >> UInt64(rhs))
}
I was implementing the Java Random class in Swift, which also involves truncating 64-bit ints into 32-bit. Thanks to OOper I just realized I can use the truncatingBitPattern initializer to avoid overflow exceptions. The function 'next' as described here becomes this in Swift,
var seed: Int64 = 0
private func next(_ bits: Int32) -> Int32 {
seed = (seed &* 0x5DEECE66D &+ 0xB) & ((1 << 48) - 1)
let shifted : Int64 = seed >>> (48 - Int64(bits))
return Int32(truncatingBitPattern: shifted)
}
Upvotes: 5
Views: 4616
Reputation: 47876
One sure way to do it is using the unsigned shift operation of unsigned integer type:
infix operator >>> : BitwiseShiftPrecedence
func >>> (lhs: Int64, rhs: Int64) -> Int64 {
return Int64(bitPattern: UInt64(bitPattern: lhs) >> UInt64(rhs))
}
print(-7 >>> 16) //->281474976710655
(Using -7
for testing with bit count 16
does not seem to be a good example, it loses all significant bits with 16-bit right shift.)
If you want to do it in your way, the bitwise-ORed missing sign bit cannot be a constant 0x4000000000000000
. It needs to be 0x8000_0000_0000_0000 (this constant overflows in Swift Int64
) when bit count == 0, and needs to be logically shifted with the same bits.
So, you need to write something like this:
infix operator >>>> : BitwiseShiftPrecedence
func >>>> (lhs: Int64, rhs: Int64) -> Int64 {
if lhs >= 0 {
return lhs >> rhs
} else {
return (Int64.max + lhs + 1) >> rhs | (1 << (63-rhs))
}
}
print(-7 >>>> 16) //->281474976710655
It seems far easier to work with unsigned integer types when you need unsigned shift operation.
Upvotes: 6
Reputation: 354456
Swift has unsigned integer types, so there is no need to a separate unsigned right shift operator. That's a choice in Java that followed from the decision to not have unsigned types.
Upvotes: 4