Reputation: 1131
We have billions of records formatted with relational data format (e.g transaction id, user name, user id and some other fields), my requirement is to create system where user can request data export from this data store (user will provide some filters like user id, date and so on), typically exported file will be having thousand to 100s of thousands to millions of records based on selected filters (output file will be CSV or similar format)
Other than raw data, I am also looking for some dynamic aggregation on few of the fields during data export.
Typical time between user submitting request and exported data file available should be within 2-3 minutes (max can be 4-5 minutes).
I am seeking suggestions on backend noSQLs for this use case, I've used Hadoop map-reduce so far but hadoop batch job execution with typical HDFS data map-reduce might not give expected SLA in my opinion.
Another option is to use Spark map-reduce which I've never used but it should be way faster then typical Hadoop map-reduce batch job.
We've already tried production grade RDBMS/OLTP instance but it clearly seems not a correct option due to size of data we are exporting and dynamic aggregation.
Any suggestion on using Spark here? or any other better noSQL?
In summary SLA, dynamic aggregation and raw data (millions) are the requirement considerations here.
Upvotes: 1
Views: 141
Reputation: 728
If system only requires to export data after doing some ETL - aggregations, filtering and transformations then answer is very straight forward. Apache Spark is the best. You would have to fine tune the system and decide whether you want to use only memory or memory + disk or serialization etc.. However, most of the times one needs to think about other aspects too; I am considering them as well.
This is a wide topic of discussion and it involves many aspects such aggregations involved, search related queries (if any), development time. As per the description, it seems to be an interactive/near-real-time-interactive system. Other aspect is whether any analysis involved? And another important point is type of system (OLTP/OLAP, only reporting etc..).
I see there are two questions involved -
- Data processing -
Apache Spark would be a best choice for computing. We are using for the same purpose, along with the filtering, we also have xml transformations to perform which are also done in Spark. Its superfast as compared to Hadoop MapReduce. Spark can run standalone and it can also run on the top of Hadoop.
- Storage -
There are many noSQL solutions available. Selection depends upon many factors such as volume, aggregations involved, search related queries etc..
Hadoop - You can go with Hadoop with HDFS as a storage system. It has many benefits as you get entire Hadoop ecosystem.If you have analysts/data scientists who require to get insights of data/ play with data then this would be a better choice as you would get different tools such as Hive/Impala. Also, resource management would be easy. But for some applications it can be too much.
Cassendra - Cassandra as a storage engine that has solved the problems of distribution and availability while maintaining scale and performance. It brings wonders when used with Spark. For example, performing complex aggregations. By the way, we are using it. For visualization (to view data for analyzing), options are Apache Zeppelin, Tableau (lot of options)
Elastic Search - Elastic Search is also a suitable option if your storage is in few TBs upto 10 TBs. It comes with Kibana (UI) which provides limited analytics capabilities including aggregations. Development time is minimal, its very quick to implement.
So, depending upon your requirement I would suggest Apache Spark for data processing (transformations/filtering/aggregations) and you may also require to consider other technology for storage and data visualization.
Upvotes: 1