Enigmatic
Enigmatic

Reputation: 4158

Get total of Pandas column

I have a Pandas data frame, as shown below, with multiple columns and would like to get the total of column, MyColumn.

           X           MyColumn      Y              Z   
0          A           84         13.0           69.0   
1          B           76         77.0          127.0   
2          C           28         69.0           16.0   
3          D           28         28.0           31.0   
4          E           19         20.0           85.0   
5          F           84        193.0           70.0   

Expected Output

I'd have expected the output to be the total of this column: 319.

Or alternatively, I would like df to be edited with a new row entitled TOTAL containing the total:

           X           MyColumn      Y              Z   
0          A           84         13.0           69.0   
1          B           76         77.0          127.0   
2          C           28         69.0           16.0   
3          D           28         28.0           31.0   
4          E           19         20.0           85.0   
5          F           84        193.0           70.0   
TOTAL                  319

I have attempted to get the sum of the column using groupby and .sum():

Total = df.groupby['MyColumn'].sum()

This causes the following error:

TypeError: 'instancemethod' object has no attribute '__getitem__'

Upvotes: 238

Views: 706680

Answers (6)

cottontail
cottontail

Reputation: 23449

Total of multiple columns

You can select the columns you want the total of and call sum() on them. To add a new row, use loc[].

df.loc['Total'] = df[['Y', 'Z']].sum()

Using the example in the OP, it makes the following transformation (note the new added row):

result


Python's built-in sum vs pandas's sum method

For a single column, we can sum in two ways: use Python's built-in sum() function and use pandas' sum() method. It should be noted that pandas' method is optimized and much faster than Python's sum(). For example, to sum values in a column with 1mil rows, pandas' sum method is ~160 times faster than Python's built-in sum() function.

df = pd.DataFrame({'Y': range(1000000)})

%timeit a = df['Y'].sum()
# 1 ms ± 143 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit b = sum(df['Y'])
# 160 ms ± 6.1 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

So use pandas' methods wherever possible.

Upvotes: 1

jezrael
jezrael

Reputation: 863631

You should use sum:

Total = df['MyColumn'].sum()
print(Total)
319

Then you use loc with Series, in that case the index should be set as the same as the specific column you need to sum:

df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index=['MyColumn'])
print(df)
         X  MyColumn      Y      Z
0        A      84.0   13.0   69.0
1        B      76.0   77.0  127.0
2        C      28.0   69.0   16.0
3        D      28.0   28.0   31.0
4        E      19.0   20.0   85.0
5        F      84.0  193.0   70.0
Total  NaN     319.0    NaN    NaN

because if you pass scalar, the values of all rows will be filled:

df.loc['Total'] = df['MyColumn'].sum()
print(df)
         X  MyColumn      Y      Z
0        A        84   13.0   69.0
1        B        76   77.0  127.0
2        C        28   69.0   16.0
3        D        28   28.0   31.0
4        E        19   20.0   85.0
5        F        84  193.0   70.0
Total  319       319  319.0  319.0

Two other solutions are with at, and ix see the applications below:

df.at['Total', 'MyColumn'] = df['MyColumn'].sum()
print(df)
         X  MyColumn      Y      Z
0        A      84.0   13.0   69.0
1        B      76.0   77.0  127.0
2        C      28.0   69.0   16.0
3        D      28.0   28.0   31.0
4        E      19.0   20.0   85.0
5        F      84.0  193.0   70.0
Total  NaN     319.0    NaN    NaN

df.ix['Total', 'MyColumn'] = df['MyColumn'].sum()
print(df)
         X  MyColumn      Y      Z
0        A      84.0   13.0   69.0
1        B      76.0   77.0  127.0
2        C      28.0   69.0   16.0
3        D      28.0   28.0   31.0
4        E      19.0   20.0   85.0
5        F      84.0  193.0   70.0
Total  NaN     319.0    NaN    NaN

Note: Since Pandas v0.20, ix has been deprecated. Use loc or iloc instead.

Upvotes: 411

Suraj Verma
Suraj Verma

Reputation: 453

There are two ways to sum of a column

dataset = pd.read_csv("data.csv")

1: sum(dataset.Column_name)

2: dataset['Column_Name'].sum()

If there is any issue in this the please correct me..

Upvotes: 5

Ghanshyam Savaliya
Ghanshyam Savaliya

Reputation: 618

As other option, you can do something like below

Group   Valuation   amount
    0   BKB Tube    156
    1   BKB Tube    143
    2   BKB Tube    67
    3   BAC Tube    176
    4   BAC Tube    39
    5   JDK Tube    75
    6   JDK Tube    35
    7   JDK Tube    155
    8   ETH Tube    38
    9   ETH Tube    56

Below script, you can use for above data

import pandas as pd    
data = pd.read_csv("daata1.csv")
bytreatment = data.groupby('Group')
bytreatment['amount'].sum()

Upvotes: 2

akuiper
akuiper

Reputation: 215127

Another option you can go with here:

df.loc["Total", "MyColumn"] = df.MyColumn.sum()

#         X  MyColumn      Y       Z
#0        A     84.0    13.0    69.0
#1        B     76.0    77.0   127.0
#2        C     28.0    69.0    16.0
#3        D     28.0    28.0    31.0
#4        E     19.0    20.0    85.0
#5        F     84.0   193.0    70.0
#Total  NaN    319.0     NaN     NaN

You can also use append() method:

df.append(pd.DataFrame(df.MyColumn.sum(), index = ["Total"], columns=["MyColumn"]))

enter image description here


Update:

In case you need to append sum for all numeric columns, you can do one of the followings:

Use append to do this in a functional manner (doesn't change the original data frame):

# select numeric columns and calculate the sums
sums = df.select_dtypes(pd.np.number).sum().rename('total')

# append sums to the data frame
df.append(sums)
#         X  MyColumn      Y      Z
#0        A      84.0   13.0   69.0
#1        B      76.0   77.0  127.0
#2        C      28.0   69.0   16.0
#3        D      28.0   28.0   31.0
#4        E      19.0   20.0   85.0
#5        F      84.0  193.0   70.0
#total  NaN     319.0  400.0  398.0

Use loc to mutate data frame in place:

df.loc['total'] = df.select_dtypes(pd.np.number).sum()
df
#         X  MyColumn      Y      Z
#0        A      84.0   13.0   69.0
#1        B      76.0   77.0  127.0
#2        C      28.0   69.0   16.0
#3        D      28.0   28.0   31.0
#4        E      19.0   20.0   85.0
#5        F      84.0  193.0   70.0
#total  NaN     638.0  800.0  796.0

Upvotes: 42

Jeff Crites
Jeff Crites

Reputation: 131

Similar to getting the length of a dataframe, len(df), the following worked for pandas and blaze:

Total = sum(df['MyColumn'])

or alternatively

Total = sum(df.MyColumn)
print Total

Upvotes: 13

Related Questions