Reputation: 964
Working on a large data-oriented search product powered by elasticsearch. We've built a lot of machine learning functionality on top of this app, but currently we're having some difficulty deciding how to integrate fairly standard NLP-based word tags into our ES index.
Currently we have a tagging service that can annotate a word with a respective type (or types, but one may be useful enough for now). This function could be abstracted to: type = getWordType(word)
I imagine there must be a way to integrate this tagging service into the analysis chain that is applied at index time, where, maybe, we tell the index what type a particular word belongs to. However, doing this kind of advanced analysis is a bit beyond my elasticsearch capacity. Does anyone have pointers on this kind of advanced analysis in elasticsearch?
Thanks!
Upvotes: 1
Views: 2961
Reputation: 11
This is achieved in Elasticsearch 6.5 with the type annotated_text
: https://www.elastic.co/guide/en/elasticsearch/plugins/6.x/mapper-annotated-text-usage.html
Essentially, kind of like synonyms, the tags (or named entity IDs, etc) can exist at the same position as the word you’re tagging.
Needs a plugin installed, the Mapper Annotated Text Plugin.
Upvotes: 1
Reputation: 1804
you might want to take a look at the ingest node functionality introduced in Elasticsearch 5.0. This allows you to preprocess your documents and add fields into the JSON before the document is being indexed in Elasticsearch.
I wrote an ingest processor that is using OpenNLP to enrich documents. You could take a look at that one and adapt it to your needs (also, pull requests are very welcome).
Check it out at https://github.com/spinscale/elasticsearch-ingest-opennlp
Upvotes: 2