Reputation: 3181
While implementing a neural network, I noticed that if I allocate memory as a single contiguous block for the data set arrays, execution time increases several times.
Compare these two methods of memory allocation:
float** alloc_2d_float(int rows, int cols, int contiguous)
{
int i;
float** array = malloc(rows * sizeof(float*));
if(contiguous)
{
float* data = malloc(rows*cols*sizeof(float));
assert(data && "Can't allocate contiguous memory");
for(i=0; i<rows; i++)
array[i] = &(data[cols * i]);
}
else
for(i=0; i<rows; i++)
{
array[i] = malloc(cols * sizeof(float));
assert(array[i] && "Can't allocate memory");
}
return array;
}
Here are the results when compiling with -march=native -Ofast
(tried gcc and clang):
michael@Pascal:~/NN$ time ./test 300 1 0
Multiplying (100000, 1000) and (300, 1000) arrays 1 times, noncontiguous memory allocation.
Allocating memory: 0.2 seconds
Initializing arrays: 0.8 seconds
Dot product: 3.3 seconds
real 0m4.296s
user 0m4.108s
sys 0m0.188s
michael@Pascal:~/NN$ time ./test 300 1 1
Multiplying (100000, 1000) and (300, 1000) arrays 1 times, contiguous memory allocation.
Allocating memory: 0.0 seconds
Initializing arrays: 40.3 seconds
Dot product: 13.5 seconds
real 0m53.817s
user 0m4.204s
sys 0m49.664s
Here's the code: https://github.com/michaelklachko/NN/blob/master/test.c
Note that both initializing and dot product are much slower for contiguous memory.
I expected the opposite - a contiguous block of memory should be more cache friendly than a large number of separate small blocks. Or at least they should be similar in performance (this machine has 64GB of RAM, and 90% of it is unused).
EDIT: Here's the compressed self-contained code (I still recommend using the github version instead, which has measuring and formatting statements):
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
float** alloc_2d_float(int rows, int cols, int contiguous){
int i;
float** array = malloc(rows * sizeof(float*));
if(contiguous){
float* data = malloc(rows*cols*sizeof(float));
for(i=0; i<rows; i++)
array[i] = &(data[cols * i]);
}
else
for(i=0; i<rows; i++)
array[i] = malloc(cols * sizeof(float));
return array;
}
void initialize(float** array, int dim1, int dim2){
srand(time(NULL));
int i, j;
for(i=0; i<dim1; i++)
for(j=0; j<dim2; j++)
array[i][j] = rand()/RAND_MAX;
}
int main(){
int i,j,k, dim1=100000, dim2=1000, dim3=300;
int contiguous=0;
float temp;
float** array1 = alloc_2d_float(dim1, dim2, contiguous);
float** array2 = alloc_2d_float(dim3, dim2, contiguous);
float** result = alloc_2d_float(dim1, dim3, contiguous);
initialize(array1, dim1, dim2);
initialize(array2, dim3, dim2);
for(i=0; i<dim1; i++)
for(k=0; k<dim3; k++){
temp = 0;
for(j=0; j<dim2; j++)
temp += array1[i][j] * array2[k][j];
result[i][k] = temp;
}
}
Upvotes: 4
Views: 432
Reputation: 320
Looks like you've run into ability or disability of your compiler to run some vectorisation of your code. I've tried to repeat your experiment with no succeed -
mick@mick-laptop:~/Загрузки$ ./a.out 100 1 0
Multiplying (100000, 1000) and (100, 1000) arrays 1 times, noncontiguous memory allocation.
Initializing arrays...
Multiplying arrays...
Execution Time: Allocating memory: 0.1 seconds Initializing arrays: 0.9 seconds Dot product: 44.8 seconds
mick@mick-laptop:~/Загрузки$ ./a.out 100 1 1
Multiplying (100000, 1000) and (100, 1000) arrays 1 times, contiguous memory allocation.
Initializing arrays...
Multiplying arrays...
Execution Time: Allocating memory: 0.0 seconds Initializing arrays: 1.0 seconds Dot product: 46.3 seconds
Upvotes: 1