Reputation: 63
I have data set of daily temperature indexed by date and I need to predict future temperature using [SVR
][1] in scikit-learn.
I'm stuck with selecting the X
and Y
of the training and X
of testing
set. For example if I want to predict Y
at time t
then I need the
training set to contain the X
& Y
at t-1, t-2, ..., t-N
where N
is the number of previous days used to predict Y
at t
.
How can I do that?
here is it.
df=daily_temp1
# define function for create N lags
def create_lags(df, N):
for i in range(N):
df['datetime' + str(i+1)] = df.datetime.shift(i+1)
df['dewpoint' + str(i+1)] = df.dewpoint.shift(i+1)
df['humidity' + str(i+1)] = df.humidity.shift(i+1)
df['pressure' + str(i+1)] = df.pressure.shift(i+1)
df['temperature' + str(i+1)] = df.temperature.shift(i+1)
df['vism' + str(i+1)] = df.vism.shift(i+1)
df['wind_direcd' + str(i+1)] = df.wind_direcd.shift(i+1)
df['wind_speed' + str(i+1)] = df.wind_speed.shift(i+1)
df['wind_direct' + str(i+1)] = df.wind_direct.shift(i+1)
return df
# create 10 lags
df = create_lags(df,10)
# the first 10 days will have missing values. can't use them.
df = df.dropna()
# create X and y
y = df['temperature']
X = df.iloc[:, 9:]
# Train on 70% of the data
train_idx = int(len(df) * .7)
# create train and test data
X_train, y_train, X_test, y_test = X[:train_idx], y[:train_idx], X[train_idx:], y[train_idx:]
# fit and predict
clf = SVR()
clf.fit(X_train, y_train)
clf.predict(X_test)
Upvotes: 1
Views: 3516
Reputation: 62037
Here's a solution that builds the feature matrix X
as the simply lag1 - lagN where lag1 is the previous days temperature and lagN is the temperature N days ago.
# create fake temperature
df = pd.DataFrame({'temp':np.random.rand(500)})
# define function for create N lags
def create_lags(df, N):
for i in range(N):
df['Lag' + str(i+1)] = df.temp.shift(i+1)
return df
# create 10 lags
df = create_lags(df,10)
# the first 10 days will have missing values. can't use them.
df = df.dropna()
# create X and y
y = df.temp.values
X = df.iloc[:, 1:].values
# Train on 70% of the data
train_idx = int(len(df) * .7)
# create train and test data
X_train, y_train, X_test, y_test = X[:train_idx], y[:train_idx], X[train_idx:], y[:train_idx]
# fit and predict
clf = SVR()
clf.fit(X_train, y_train)
clf.predict(X_test)
Upvotes: 2