Reputation: 565
I have a pandas df that looks like this:
TTL1 TTL2
0 val1
1 val2
2 val3
3 val4
4 val5
5 val6
6 val7
7 val8
and I want to make it like so:
TTL1
0 val1
1 val2
2 val3
3 val4
4 val5
5 val6
6 val7
7 val8
any ideas please on how I can get this done?
Upvotes: 1
Views: 1257
Reputation: 61947
There is a bit ambiguity in the problem but the pandas method stack
is used to put all values into a single column.
df.stack()
Output
0 TTL1 val1
1 TTL1 val2
2 TTL1 val3
3 TTL2 val4
4 TTL1 val5
5 TTL1 val6
6 TTL1 val7
7 TTL2 val8
dtype: object
Upvotes: 0
Reputation: 210832
yet another solution (assuming OP has NaN
's in the TTL1
column):
In [127]: df.TTL1.fillna(df.TTL2)
Out[127]:
0 val1
1 val2
2 val3
3 val4
4 val5
5 val6
6 val7
7 val8
Name: TTL1, dtype: object
Upvotes: 1
Reputation: 294218
set_up
df = pd.DataFrame([
['val1', np.nan],
['val2', np.nan],
['val3', np.nan],
[np.nan, 'val4'],
['val5', np.nan],
['val6', np.nan],
['val7', np.nan],
[np.nan, 'val8']
], columns=['TTL1', 'TTL2'])
simplest answer is to use combine_first
df.TTL1.combine_first(df.TTL2).to_frame()
TTL1
0 val1
1 val2
2 val3
3 val4
4 val5
5 val6
6 val7
7 val8
If those blanks are actually ''
then do this first
df.replace('', np.nan, inplace=True)
Upvotes: 2
Reputation: 76917
How about conditional setting?
In [260]: df.loc[df.TTL1 == '', 'TTL1'] = df.TTL2
In [261]: df
Out[261]:
TTL1 TTL2
0 val1
1 val2
2 val3
3 val4 val4
4 val5
5 val6
6 val7
7 val8 val8
Alternatively, using np.where
In [266]: df.TTL1 = np.where(df.TTL1 == '', df.TTL2, df.TTL1)
In [267]: df
Out[267]:
TTL1 TTL2
0 val1
1 val2
2 val3
3 val4 val4
4 val5
5 val6
6 val7
7 val8 val8
Upvotes: 3