Reputation: 5034
I suppose when a universal reference parameter is matched with an rvalue reference argument, an rvalue reference argument is returned. However, my testing shows that the rvalue reference is turned into a lvalue reference by the universal reference function template. Why is it so?
#include <iostream>
#include <type_traits>
using namespace std;
template <typename T>
T f1(T&&t) { //<-----this is a universal reference
cout << "is_lvalue reference:" << is_lvalue_reference<T>::value << endl;
cout << "is_rvalue reference:" << is_rvalue_reference<T>::value << endl;
cout << "is_reference:" << is_reference<T>::value << endl;
return t;
}
void f2(int&& t) {
cout << "f2 is_lvalue reference:" << is_lvalue_reference<decltype(t)>::value << endl;
cout << "f2 is_rvalue reference:" << is_rvalue_reference<decltype(t)>::value << endl;
cout << "f2 is_reference:" << is_reference<decltype(t)>::value << endl;
f1(t);
}
int main()
{
f2(5);
return 0;
}
In both GCC and VC++2010, this is the result:
f2 is_lvalue reference:0
f2 is_rvalue reference:1
f2 is_reference:1
is_lvalue reference:1
is_rvalue reference:0
is_reference:1
In other words, the parameter t
in f2
was an rvalue reference, but when passed to f1
, the parameter became a lvalue reference. Shouldn't it retain the rvalue-ness in f1
?
Upvotes: 4
Views: 1553
Reputation: 145
use the std::forward to keep t as rvalue.
void f2(int&& t) {
//....
f1(std::forward<int>(t));
}
The t argument is passed as rvalue and deduced as type int. (see how the deduction is done here )
std::forward(t) returns a rvalue of type int&& so that calls f1(int&&)
without std::forward(t), f1(t) takes the argument of type int and calls f1(int&)
UPDATE: Please be aware of the difference between
is_lvalue_reference<T> and is_lvalue_reference<decltype<t>>.
In the template, T is deduced based on the function argument, whereas the value category of t is always lvalue in f2 and
forward<int>(t) and move(t)
are always rvalue.
#include <iostream>
#include <type_traits>
class A {};
template <typename T>
T f0(T& t) { //<-----this is a universal reference
std::cout<< "f0 lvalue"<<'\n';
// take T as template argument, it is type int, so not rvalue, not lvalue.
// std::cout << "is_lvalue reference:" << std::is_lvalue_reference<T>::value << std::endl;
std::cout << "is_lvalue reference:" << std::is_lvalue_reference<T>::value << std::endl;
std::cout << "is_rvalue reference:" << std::is_rvalue_reference<T>::value << std::endl;
std::cout << "is_reference:" << std::is_reference<T>::value << std::endl;
return t;
}
template <typename T>
T f0(T&&t) { //<-----this is a universal reference
std::cout<< "f0 rvalue"<<'\n';
std::cout << "is_lvalue reference:" << std::is_lvalue_reference<T>::value << std::endl;
std::cout << "is_rvalue reference:" << std::is_rvalue_reference<T>::value << std::endl;
std::cout << "is_reference:" << std::is_reference<T>::value << std::endl;
return t;
}
template <typename T>
T f1(T& t) { //<-----this is a universal reference
std::cout<< "f1 lvalue"<<'\n';
// take T as template argument, it is type int, so not rvalue, not lvalue.
// std::cout << "is_lvalue reference:" << std::is_lvalue_reference<T>::value << std::endl;
std::cout << "is_lvalue reference:" << std::is_lvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_rvalue reference:" << std::is_rvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_reference:" << std::is_reference<decltype(t)>::value << std::endl;
return t;
}
template <typename T>
T f1(T&&t) { //<-----this is a universal reference
std::cout<< "f1 rvalue"<<'\n';
std::cout << "is_lvalue reference:" << std::is_lvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_rvalue reference:" << std::is_rvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_reference:" << std::is_reference<decltype(t)>::value << std::endl;
return t;
}
void f2(int&&t) { //<-----this is a universal reference
std::cout<< "f2 rvalue"<<'\n';
std::cout << "is_lvalue reference:" << std::is_lvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_rvalue reference:" << std::is_rvalue_reference<decltype(t)>::value << std::endl;
std::cout << "is_reference:" << std::is_reference<decltype(t)>::value << std::endl;
f1(std::forward<int>(t)); // T is deduced as int for f(T&&), type int is not rvalue, nor lvalue, t is rvalue
f1(std::move(t)); // T is deduced as int for f(T&&), type int is not rvalue, nor lvalue, t is rvalue
f1(t); // T is deduced as int for f(T&), type int is not rvalue, nor lvalue, t is lvalue
//if f1(T&) not exist, then f1(t) will call f1(T&&), T is deduced as int&, type int& is lvalue, t is lvalue
f0(std::forward<int>(t)); // T is deduced as int for f(T&&), type int is not rvalue, nor lvalue, t is rvalue
f0(std::move(t)); // T is deduced as int for f(T&&), type int is not rvalue, nor lvalue, t is rvalue
f0(t); // T is deduced as int for f(T&), type int is not rvalue, nor lvalue, t is lvalue
//if f0(T&) not exist, then f0(t) will call f0(T&&), T is deduced as int&, type int& is lvalue, t is lvalue
}
void test_rvalue()
{
f2(5);
std::cout << std::boolalpha;
std::cout << std::is_lvalue_reference<A>::value << '\n'; // A is not lvalue
std::cout << std::is_rvalue_reference<A>::value << '\n'; // A is not rvalue
std::cout << std::is_lvalue_reference<A&>::value << '\n'; // A& is lvalue
std::cout << std::is_rvalue_reference<A&&>::value << '\n'; // A&& is rvalue
std::cout << std::is_lvalue_reference<int>::value << '\n'; // int is not lvalue
std::cout << std::is_rvalue_reference<int>::value << '\n'; // int is not rvalue
std::cout << std::is_lvalue_reference<int&>::value << '\n'; // int& is lvalue
std::cout << std::is_rvalue_reference<int&&>::value << '\n'; // int&& is rvalue
}
Upvotes: -1
Reputation: 5034
After studying the C++11 standard, I have a vague idea on what was going on after my f1(t);
in f2
. I describe it here to see if I got it right:
f2
, t
is an lvalue of type int&&
(not int
, this is an important difference) the call f1(t);
causes type to be deduced like this:
2.1 when T
in f1
is given an lvalue, it is deduced as a reference of that lvalue's type orint&& &
2.2 reference collapsing causes int&& &
to become int &
. This is the value of T
.
Since the parameter of f1
is declared as T&&
, the type of parameter t
in f1
is int & &&
. So reference collapsing occurs a second time to deduce the type of t
as int &
.
Hence T=int &
and type of parameter t
is int &
. i.e. parameter t
is an lvalue of type int &
Any comment?
Upvotes: 0
Reputation: 141576
Calling f1(t)
, the argument is the expression t
. Not static_cast<decltype(t)>(t)
or something. Your examination of decltype(t)
has nothing to do with the call of f1(t)
.
The expression t
has type int
and value category lvalue. (A rule of thumb is that if you can take the address of an expression then it is an lvalue, and you can certainly write &t
). The "information" that a reference variable was originally declared as a reference is only visible via a decltype
examination.
Since f1
is called with an lvalue, T
is deduced to int&
.
NB. You possibly want f1
to also use decltype(t)
rather than T
, if you ever want to see is_rvalue_reference
being true in f1
. For rvalue arguments, T
deduces to a non-reference type, e.g. if you fix f2
by making it do f1(std::move(t));
then f1
's T
is int
and decltype(t)
in f1
is int&&
.
Upvotes: 3
Reputation: 17483
The reason is that named rvalue references are treated as lvalues.
You should use std::move inside f2 when passing t to f1 to retain rvalueness:
void f2(int&& t) {
f1(std::move(t));
}
Here you can find a good explanation.
Upvotes: 9