Reputation: 369
Is there any built-in pandas' method to find the cumulative correlation between two pandas series?
What it should do is effectively fixing the left side of the window in pandas.rolling_corr(data, window) so that the width of the window increases and eventually the window includes all data points.
Upvotes: 1
Views: 883
Reputation: 21
Satyabrat Mishra is right. df.rolling(max_len, min_period = 1).func()
could solve this question.
a = gen_df(100, 5)
b = gen_df(100, 5)
ans = a.rolling(100, min_periods = 10).corr(b)
Upvotes: 0
Reputation: 43
Just use rolling correlation, with a very large window, and min_period = 1.
Upvotes: 1
Reputation: 77017
Here's one way, map
on index and apply corr
for the increasing size of series.
In [116]: df.index.map(lambda x: df[col1].corr(df.loc[:x, col2]))
Details
In [112]: df = pd.DataFrame(pd.np.random.rand(10,2))
In [113]: df
Out[113]:
0 1
0 0.094958 0.891910
1 0.482616 0.551912
2 0.877540 0.573768
3 0.839921 0.328452
4 0.334714 0.908346
5 0.530518 0.837590
6 0.285152 0.126937
7 0.386568 0.474815
8 0.279807 0.939694
9 0.741882 0.135982
In [114]: df['roll_corr'] = df.index.map(lambda x: df[0].corr(df.loc[:x, 1]))
In [115]: df
Out[115]:
0 1 roll_corr
0 0.094958 0.891910 NaN
1 0.482616 0.551912 -1.000000
2 0.877540 0.573768 -0.832929
3 0.839921 0.328452 -0.848385
4 0.334714 0.908346 -0.839698
5 0.530518 0.837590 -0.791736
6 0.285152 0.126937 -0.312806
7 0.386568 0.474815 -0.283357
8 0.279807 0.939694 -0.354385
9 0.741882 0.135982 -0.459907
Validation
In [121]: df.corr()
Out[121]:
0 1
0 1.000000 -0.459907
1 -0.459907 1.000000
In [122]: df[:5].corr()
Out[122]:
0 1
0 1.000000 -0.839698
1 -0.839698 1.000000
Upvotes: 3