Reputation: 2350
I am new to TensorFlow and am trying to write an algorithm to classify images in the CIFAR-10 dataset. I am getting this error:
InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[10000,10] labels_size=[1,10000]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape, Reshape_1)]]
Here is my code:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import cPickle
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
image_size = 32*32*3 # because 3 channels
x = tf.placeholder('float', shape=(None, image_size))
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([image_size, n_nodes_hl1])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(I am new to TensorFlow and tf.random_normal([n_nodes_hl3, n_classes])), 'biases':tf.Variable(tf.random_normal([n_classes]))}
# input_data * weights + biases
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
# activation function
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))//THIS IS LINE 48 WHERE THE ERROR OCCURS
#learning rate = 0.001
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(5):
with open('data_batch_'+str(i+1),'rb') as f:
train_data = cPickle.load(f)
print train_data
print prediction.get_shape()
#print len(y)
_, c = sess.run([optimizer, cost], feed_dict={x:train_data['data'],y:train_data['labels']})
epoch_loss += c
print 'Epoch ' + str(epoch) + ' completed out of ' + str(hm_epochs) + ' loss: ' + str(epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
with open('test_batch','rb') as f:
test_data = cPickle.load(f)
accuracy = accuracy.eval({x:test_data['data'],y:test_data['labels']})
print 'Accuracy: ' + str(accuracy)
train_neural_network(x)
I'm pretty sure this means that in line 48 (shown above) prediction
and y
are not the same shape, but I don't understand TensorFlow well enough to know how to fix it. I don't even really understand where y
is being set, I got most of this code from a tutorial and fiddled with it to apply it to a different dataset. How can I fix this error?
Upvotes: 0
Views: 6146
Reputation: 39
Here are some updates to the code to support TensorFlow version 1.0:
def train_neural_network(x):
prediction = neural_network_model(x)
#OLD VERSION:
#cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
#NEW:
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
#OLD:
#sess.run(tf.initialize_all_variables())
#NEW:
sess.run(tf.global_variables_initializer())
Upvotes: 1
Reputation: 126154
The tf.nn.softmax_cross_entropy_with_logits(logits, labels)
op expects its logits
and labels
arguments to be tensors with the same shape. Furthermore, the logits
and labels
arguments should be 2-D tensors (matrices) with batch_size
rows, and num_classes
columns.
From the error message and the size of logits
, I'm guessing that batch_size
is 10000, and num_classes
is 10. From the size of labels
, I'm guessing that your labels are encoded as a list of integers, where the integer represent the index of the class for the corresponding input example. (I'd have expected this to be a tf.int32
value, rather than tf.float32
as it appears to be in your program, but perhaps there is some automatic conversion going on.)
In TensorFlow, you can use the tf.nn.sparse_softmax_cross_entropy_with_logits()
to compute cross-entropy on data in this form. In your program, you could do this by replacing the cost
calculation with:
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
prediction, tf.squeeze(y)))
Note that the tf.squeeze()
op is needed to convert y
into a vector of length batch_size
(in order to be a valid argument to tf.nn.sparse_softmax_cross_entropy_with_logits()
.
Upvotes: 2