Reputation: 43
I have been searching for a long time on the net but to no avail. Please help or try to give some ideas how to achieve this
I use pandas to read MovieLens csv file
ratings = pd.read_table('ml-latest-small/ratings.csv')
then I get a table like this:
userId movieId rating timestamp
1 31 2.5 1260759144
1 1029 3.0 1260759179
1 1061 3.0 1260759182
1 1129 2.0 1260759185
1 1172 4.0 1260759205
2 31 3.0 1260759134
2 1111 4.5 1260759256
I want to transform it to dict like
{userId:{movieId:rating}}
e.g
{
1:{31:2.5,1029:3.0,1061,3.0,1129:2.0,1172:4.0},
2:{31:3.0,1111:4.5}
}
I tried this code, but failed:
for user in ratings['userId']:
for movieid in ratings['movieId']:
di_rating.setdefault(user,{})
di_rating[user][movieid]=ratings['rating'][ratings['userId'] == user][ratings['movieId'] == movieid]
Can someone please help me?
Upvotes: 4
Views: 253
Reputation: 862511
You can use groupby
with iterrows
:
d = df.groupby('userId').apply(lambda y: {int(x.movieId): x.rating for i, x in y.iterrows()})
.to_dict()
print (d)
{
1: {1129: 2.0, 1061: 3.0, 1172: 4.0, 1029: 3.0, 31: 2.5},
2: {1111: 4.5, 31: 3.0}
}
Another solution from deleted answer:
d1 = df.groupby('userId').apply(lambda x: dict(zip(x['movieId'], x['rating']))).to_dict()
print (d1)
{
1: {1129: 2.0, 1061: 3.0, 1172: 4.0, 1029: 3.0, 31: 2.5},
2: {1111: 4.5, 31: 3.0}
}
Upvotes: 4