Reputation: 29307
I have a dataframe with a Date
column, I group the data by year and I can compute mean and median. But how to compute the mode? Here is the error I get:
>>> np.random.seed(0)
>>> rng = pd.date_range('2010-01-01', periods=10, freq='2M')
>>> df = pd.DataFrame({ 'Date': rng, 'Val': np.random.random_integers(0,100,size=10) })
>>> df
Date Val
0 2010-01-31 44
1 2010-03-31 47
2 2010-05-31 64
3 2010-07-31 67
4 2010-09-30 67
5 2010-11-30 9
6 2011-01-31 83
7 2011-03-31 21
8 2011-05-31 36
9 2011-07-31 87
>>> df.groupby(pd.Grouper(key='Date',freq='A')).mean()
Val
Date
2010-12-31 49.666667
2011-12-31 56.750000
>>> df.groupby(pd.Grouper(key='Date',freq='A')).median()
Val
Date
2010-12-31 55.5
2011-12-31 59.5
>>> df.groupby(pd.Grouper(key='Date',freq='A')).mode()
Traceback (most recent call last):
File "<pyshell#109>", line 1, in <module>
df.groupby(pd.Grouper(key='Date',freq='A')).mode()
File "C:\Python27\lib\site-packages\pandas\core\groupby.py", line 554, in __getattr__
return self._make_wrapper(attr)
File "C:\Python27\lib\site-packages\pandas\core\groupby.py", line 571, in _make_wrapper
raise AttributeError(msg)
AttributeError: Cannot access callable attribute 'mode' of 'DataFrameGroupBy' objects, try using the 'apply' method
Upvotes: 5
Views: 10902
Reputation: 554
mode is problematic as others have mentioned, however a DataFrameGroupby object can be applied a trivial lambda function, just as the AttributeError suggests using (and contains no ugly slicing or anything else):
df.groupby(grouping_column)[[i for i in pivotable_columns]].apply(lambda x: x.mode())]
Upvotes: 0
Reputation: 294218
np.unique
with the return_counts
parameter.argmax
on the counts array to get value from unique array.np.apply_along_axis
for a custom function mode
def mode(a):
u, c = np.unique(a, return_counts=True)
return u[c.argmax()]
df.groupby(pd.Grouper(key='Date',freq='A')).Val.apply(mode)
Date
2010-12-31 67
2011-12-31 21
Freq: A-DEC, Name: Val, dtype: int64
Upvotes: 2
Reputation: 2544
mode
isn't a built in function that's automatically compatible with pandas groupby objects. You could use the scipy.stats
module. This feels a little clunky, though.
from scipy import stats
df.groupby(pd.Grouper(key='Date',freq='A')).apply(stats.mode)
Alternatively, you could use the value_counts()
function and take the first index value returned. This is the route I would go.
df.groupby(pd.Grouper(key='Date', freq='A')).value_counts()[0].index.values[0]
Upvotes: 1