Reputation: 4317
This is hopefully an easy question for someone out there:
I have one data frame that looks like this:
import pandas as pd
names_raw = {
'device_id': [ '1d28d33a-c98e-4986-a7bb-5881d222c9a8','54322099-e76d-4986-afd2-0861e2113a16','ec3a9f9d-8e4d-4986-bea8-c17c361366e9','cc8e247d-4e2e-4986-b783-e516d03a358c','ca2d8769-ccf5-4986-8aed-741ca68e94cd','12178e22-6d64-4986-966a-374326fdaf3d','50ba7a2e-a1aa-4986-86a7-08e0605dc702','f427c8e9-65d4-46de-b986-8f8e79242842','cee68e2b-135f-45b0-be4b-7c23009866ba','e785988e-2693-47ad-9899-0049860ccaa7','a1986866-13f8-4dbe-b661-8c9f78eac745','a9998ecd-9fe9-4932-870d-29c6b5df1214','9b88e362-b06d-4317-96f5-f266c986a8d6','a04498ef-fd7c-4aa4-bffc-9158ccbad3a1'],
'pod_id': ['B00001','B00011','B00013','B00016','B00021','B00023','B00024','B00026','B00027','B00028','B00030','B00032','B00034','B00039'],
'native_id': ['zim_pod_0001','zim_pod_0002', 'zim_pod_0003', 'zim_pod_0004', 'zim_pod_0005', 'zim_pod_0006', 'zim_pod_0007', 'zim_pod_0008', 'zim_pod_0009', 'zim_pod_0010', 'zim_pod_0011', 'zim_pod_0012', 'zim_pod_0013','zim_pod_0014']
}
names = pd.DataFrame(names_raw, columns = ['device_id', 'pod_id', 'native_id'])
And another data frame that looks like this:
>>> df
device_id day month year rain
0 1d28d33a-c98e-4986-a7bb-5881d222c9a8 31 12 2016 0.0
1 54322099-e76d-4986-afd2-0861e2113a16 31 12 2016 0.0
2 ec3a9f9d-8e4d-4986-bea8-c17c361366e9 31 12 2016 0.0
3 cc8e247d-4e2e-4986-b783-e516d03a358c 31 12 2016 1.2
4 ca2d8769-ccf5-4986-8aed-741ca68e94cd 31 12 2016 2.2
5 12178e22-6d64-4986-966a-374326fdaf3d 31 12 2016 0.2
6 9b88e362-b06d-4317-96f5-f266c986a8d6 31 12 2016 0.0
I want to replace the device_id
column with the native_id
column. How can this be done using the least amount of lines of code?
The final data frame should look something like this:
>>> df
native_id day month year rain
0 zim_pod_0001 31 12 2016 0.0
1 zim_pod_0002 31 12 2016 0.0
2 zim_pod_0003 31 12 2016 0.0
etc. etc...
Upvotes: 1
Views: 313
Reputation: 493
Use the merge()
method which is built-in to Pandas. It essentially works as a join, and is quite straightforward to use. Specify device_id as the joining key, and then select the columns that you want, like so:
df2 = pd.merge(df,names,on="device_id")[["native_id","day","month","year","rain"]]
Result:
native_id day month year rain
0 zim_pod_0001 31 12 2016 0.0
1 zim_pod_0002 31 12 2016 0.0
2 zim_pod_0003 31 12 2016 0.0
3 zim_pod_0004 31 12 2016 1.2
4 zim_pod_0005 31 12 2016 2.2
5 zim_pod_0006 31 12 2016 0.2
6 zim_pod_0013 31 12 2016 0.0
Upvotes: 0
Reputation: 210832
Try this:
df['native_id'] = df.device_id.map(names.set_index('device_id')['native_id'])
Or if you don't want to preserve device_id
column in the df
DF:
In [210]: df['native_id'] = df.pop('device_id').map(names.set_index('device_id')['native_id'])
In [211]: df
Out[211]:
day month year rain native_id
0 31 12 2016 0.0 zim_pod_0001
1 31 12 2016 0.0 zim_pod_0002
2 31 12 2016 0.0 zim_pod_0003
3 31 12 2016 1.2 zim_pod_0004
4 31 12 2016 2.2 zim_pod_0005
5 31 12 2016 0.2 zim_pod_0006
6 31 12 2016 0.0 zim_pod_0013
Upvotes: 1