Reputation: 33
I am trying to use Boost to embed a planar graph using the Chrobak-Payne algorithm. I am able to run the example successfully, but when I try to modify it and use different graphs it does not work correctly. I am trying to embed the second platonic graph but it does not work, and my code crashes with "Segmentation fault: 11". I assumed it is because I needed to use make_connected, make_biconnected_planar, and make_maximal_planar, but adding them did not fix it.
Here is the modified source example using the second platonic graph and the three helper functions:
//=======================================================================
// Copyright 2007 Aaron Windsor
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <iostream>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/property_map/property_map.hpp>
#include <vector>
#include <boost/graph/planar_canonical_ordering.hpp>
#include <boost/graph/is_straight_line_drawing.hpp>
#include <boost/graph/chrobak_payne_drawing.hpp>
#include <boost/graph/boyer_myrvold_planar_test.hpp>
using namespace boost;
//a class to hold the coordinates of the straight line embedding
struct coord_t
{
std::size_t x;
std::size_t y;
};
int main(int argc, char** argv)
{
typedef adjacency_list
< vecS,
vecS,
undirectedS,
property<vertex_index_t, int>,
property<edge_index_t, int>
>
graph;
graph g(7);
add_edge(0,1,g);
add_edge(1,2,g);
add_edge(2,3,g);
add_edge(3,0,g);
add_edge(0,4,g);
add_edge(1,5,g);
add_edge(2,6,g);
add_edge(3,7,g);
add_edge(4,5,g);
add_edge(5,6,g);
add_edge(6,7,g);
add_edge(7,4,g);
make_connected(g); //Make connected (1/3)
//Compute the planar embedding as a side-effect
typedef std::vector< graph_traits<graph>::edge_descriptor > vec_t;
std::vector<vec_t> embedding(num_vertices(g));
boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding =
&embedding[0]
);
make_biconnected_planar(g, &embedding[0]); //Make biconnected planar (2/3)
make_maximal_planar(g, &embedding[0]); //Make maximal planar (3/3)
//Find a canonical ordering
std::vector<graph_traits<graph>::vertex_descriptor> ordering;
planar_canonical_ordering(g, &embedding[0], std::back_inserter(ordering));
//Set up a property map to hold the mapping from vertices to coord_t's
typedef std::vector< coord_t > straight_line_drawing_storage_t;
typedef boost::iterator_property_map
< straight_line_drawing_storage_t::iterator,
property_map<graph, vertex_index_t>::type
>
straight_line_drawing_t;
straight_line_drawing_storage_t straight_line_drawing_storage
(num_vertices(g));
straight_line_drawing_t straight_line_drawing
(straight_line_drawing_storage.begin(),
get(vertex_index,g)
);
// Compute the straight line drawing
chrobak_payne_straight_line_drawing(g,
embedding,
ordering.begin(),
ordering.end(),
straight_line_drawing
);
std::cout << "The straight line drawing is: " << std::endl;
graph_traits<graph>::vertex_iterator vi, vi_end;
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
{
coord_t coord(get(straight_line_drawing,*vi));
std::cout << *vi << " -> (" << coord.x << ", " << coord.y << ")"
<< std::endl;
}
// Verify that the drawing is actually a plane drawing
if (is_straight_line_drawing(g, straight_line_drawing))
std::cout << "Is a plane drawing." << std::endl;
else
std::cout << "Is not a plane drawing." << std::endl;
return 0;
}
But for some reason I am still getting a segmentation fault. I know it is at the call:
chrobak_payne_straight_line_drawing(g,
embedding,
ordering.begin(),
ordering.end(),
straight_line_drawing
);
because it runs fine without it (but does not compute the embedding). Where is the memory issue causing this segmentation fault? The graph I am embedding is smaller than the example.
Upvotes: 1
Views: 513
Reputation: 1939
From must be a maximal planar graph with at least 3 vertices, the requirement that k > 2 is needed for success. Your call to Planar Canonical Ordering returned two vertices. Catch is chrobak_payne_straight_line_drawing
does no checking for you and it asserts at the vector iterator test in the std.
add:
assert( ordering.size( ) > 2 );
before calling, or a conditional, depends what you are up to.
one more edge:
add_edge(1,4,g);
And it would have worked.
Upvotes: 2