Reputation: 909
I have a Pandas dataframe like the following:
col1 col2 col3 col4
0 5 1 11 9
1 2 3 14 7
2 6 5 54 8
3 11 2 67 44
4 23 8 2 23
5 1 5 9 8
6 9 7 45 71
I want to make a 5th column (col5) that is dependent on the value of col1 and takes a value of one of the other columns.
Here's kind of how I want it to look, but am having some issues.
if col1 < 3:
col5 == col2
elif col1 < 7 & col1 >= 3:
col5 == col3
elif col1 >= 7 & col1 < 50:
col5 == col4
Which would produce the following dataframe:
col1 col2 col3 col4 col5
0 5 1 11 9 11
1 2 3 14 7 3
2 6 5 54 8 54
3 11 2 67 44 44
4 23 8 2 23 23
5 97 5 9 8 8
6 9 7 45 71 71
Thanks in advance and let me know if you have any questions
Upvotes: 3
Views: 4389
Reputation: 863501
You can use multiple numpy.where
, if no condition is True
(col1 => 50
) was added last value 1
:
df['col5'] = np.where(df['col1'] <3, df['col2'],
np.where((df['col1'] <7) & (df['col1'] >=3 ), df['col3'],
np.where((df['col1'] >=7) & (df['col1'] <50 ), df['col4'], 1)))
print (df)
col1 col2 col3 col4 col5
0 5 1 11 9 11
1 2 3 14 7 3
2 6 5 54 8 54
3 11 2 67 44 44
4 23 8 2 23 23
5 97 5 9 8 1
6 9 7 45 71 71
EDIT by changed values:
If need col4
for all values >=7
:
df['col5'] = np.where(df['col1'] <3, df['col2'],
np.where((df['col1'] <7) & (df['col1'] >=3 ), df['col3'], df['col4']))
print (df)
col1 col2 col3 col4 col5
0 5 1 11 9 11
1 2 3 14 7 3
2 6 5 54 8 54
3 11 2 67 44 44
4 23 8 2 23 23
5 97 5 9 8 8
6 9 7 45 71 71
Timings in len(df)=7000
:
In [441]: %timeit df['col51'] = np.where(df['col1'] <3, df['col2'], np.where((df['col1'] <7) & (df['col1'] >=3 ), df['col3'], df['col4']))
The slowest run took 5.31 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.25 ms per loop
In [442]: %timeit df["col52"] = df.apply(lambda x: col52(x), axis=1)
1 loop, best of 3: 552 ms per loop
In [443]: %timeit df["col53"] = [col53(c1,c2,c3,c4) for c1,c2,c3,c4 in zip(df.col1,df.col2,df.col3,df.col4)]
100 loops, best of 3: 9.87 ms per loop
Timings in len(df)=70k
In [446]: %timeit df['col51'] = np.where(df['col1'] <3, df['col2'], np.where((df['col1'] <7) & (df['col1'] >=3 ), df['col3'], df['col4']))
100 loops, best of 3: 2.5 ms per loop
In [447]: %timeit df["col52"] = df.apply(lambda x: col52(x), axis=1)
1 loop, best of 3: 5.36 s per loop
In [448]: %timeit df["col53"] = [col53(c1,c2,c3,c4) for c1,c2,c3,c4 in zip(df.col1,df.col2,df.col3,df.col4)]
10 loops, best of 3: 96.3 ms per loop
Code for timings:
#change 1000 to 10000 for 70k
df = pd.concat([df]*1000).reset_index(drop=True)
def col52(x):
if x["col1"] < 3:
return x["col2"]
elif x["col1"] >=3 and x["col1"] < 7:
return x["col3"]
elif x["col1"] >= 7 and x["col1"] < 50:
return x["col4"]
def col53(c1,c2,c3,c4):
if c1 < 3:
return c2
elif c1 >=3 and c1 < 7:
return c3
elif c1>= 7 and c1< 50:
return c4
df['col51'] = np.where(df['col1'] <3, df['col2'], np.where((df['col1'] <7) & (df['col1'] >=3 ), df['col3'], df['col4']))
df["col52"] = df.apply(lambda x: col52(x), axis=1)
df["col53"] = [col53(c1,c2,c3,c4) for c1,c2,c3,c4 in zip(df.col1,df.col2,df.col3,df.col4)]
print (df)
Upvotes: 7
Reputation: 166
One way to do this is to use the pd.DataFrame.apply function:
def col5(x):
if x["col1"] < 3:
return x["col2"]
elif x["col1"] >=3 and x["col1"] < 7:
return x["col3"]
elif x["col1"] >= 7 and x["col1"] < 50:
return x["col4"]
This function takes each row of the dataframe as input. You can access the various column values in that row in the usual way: x["col1"], x["col2"], etc.
Now, use the apply function which is used to run a custom function (like col5 above) over each row or column. The argument "axis" is 1 for applying the function to each row and is 0 for applying the function to each column (in which case, x has a different structure i.e. it's indexed by your index not column names):
df["col5"] = df.apply(lambda x: col5(x), axis=1)
Also, as a general note, apply can be very slow specially when you have functions with if-else blocks because for each row, your processor has to decide which statement in the if-else block should be executed ("pipelining" and "branch prediction"). You should be okay here though.
Upvotes: 3