Extria
Extria

Reputation: 373

Scrape tables with python

I am trying to scrape tables and convert them into data.tables in python, but I have little luck of election data in USA. This is html of the data I want to scrape.

<tr class="type-republican">
<th class="results-name" scope="row"><a href="xxxxx"><span class="name-combo"><span    class="token token-party"><abbr title="Republican">R</abbr></span> <span    class="token token-winner"><b aria-hidden="true" class="icon icon-check"></b>   <span class="icon-text">Winner</span></span> D. Trump</span></a></th>
<td class="results-percentage"><span class="percentage-combo"><span  class="number">62.9%</span><span class="graph"><span class="bar"><span class="index" style="width:62.9%;"></span></span></span></span></td>
<td class="results-popular">1,306,925</td>
<td class="delegates-cell">9</td>
</tr>
<tr class="type-democrat">
<th class="results-name" scope="row"><a href="xxxxxx"><span class="name-combo"><span   class="token token-party"><abbr title="Democratic">D</abbr></span> H.   Clinton</span></a></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">34.6%</span><span class="graph"><span class="bar"><span class="index" style="width:34.6%;"></span></span></span></span></td>
<td class="results-popular">718,084</td>
<td class="delegates-cell"></td>
</tr>
<tr class="type-independent">
<th class="results-name" scope="row"><span class="name-combo"><span class="token token-party"><abbr title="Independent">I</abbr></span> G. Johnson</span></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">2.1%</span><span class="graph"><span class="bar"><span class="index" style="width:2.1%;"></span></span></span></span></td>
<td class="results-popular">43,869</td>
<td class="delegates-cell"></td>
</tr>
<tr class="type-independent">
<th class="results-name" scope="row"><span class="name-combo"><span class="token token-party"><abbr title="Independent">I</abbr></span> J. Stein</span></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">0.4%</span><span class="graph"><span class="bar"><span class="index" style="width:0.4%;"></span></span></span></span></td>
<td class="results-popular">9,287</td>
<td class="delegates-cell"></td>
</tr>
</tbody>
</table>, <table class="results-table">
<tbody>
<tr class="type-republican">
<th class="results-name" scope="row"><a href="xxxxx"><span class="name-combo"><span class="token token-party"><abbr title="Republican">R</abbr></span> D. Trump</span></a></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">73.4%</span><span class="graph"><span class="bar"><span class="index" style="width:73.4%;"></span></span></span></span></td>
<td class="results-popular">18,110</td>
</tr>
<tr class="type-democrat">
<th class="results-name" scope="row"><a href="xxxxxx"><span class="name-combo"><span class="token token-party"><abbr title="Democratic">D</abbr></span> H. Clinton</span></a></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">24.0%</span><span class="graph"><span class="bar"><span class="index" style="width:24.0%;"></span></span></span></span></td>
<td class="results-popular">5,908</td>
</tr>
<tr class="type-independent">
<th class="results-name" scope="row"><span class="name-combo"><span class="token token-party"><abbr title="Independent">I</abbr></span> G. Johnson</span></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">2.2%</span><span class="graph"><span class="bar"><span class="index" style="width:2.2%;"></span></span></span></span></td>
<td class="results-popular">538</td>
</tr>
<tr class="type-independent">
<th class="results-name" scope="row"><span class="name-combo"><span class="token token-party"><abbr title="Independent">I</abbr></span> J. Stein</span></th>
<td class="results-percentage"><span class="percentage-combo"><span class="number">0.4%</span><span class="graph"><span class="bar"><span class="index" style="width:0.4%;"></span></span></span></span></td>
<td class="results-popular">105</td>
</tr>
</tbody>

And so on... So my code looks like this.

Percentage = []
Count = []
page = requests.get('xxxx')
soup = BeautifulSoup(page.text, "lxml")
table = soup.find('div', class_='content-alpha')
for row in table.find_all('tr'):
    col = row.find_all('td')
    Percentage = col[0].find(text=True)
    Count = col[1].find(text=True
    print (Count)

But what I get here is an information from just few tables, but not all of them. How can I get information from all tables? And why do I get information just from few tables?

I hope you understand the question.

HTML is really big, so I add link to the website http://www.politico.com/2016-election/results/map/president/alabama/. I want to scrape 2016 US election data of every county in Alabama

Upvotes: 2

Views: 6907

Answers (2)

Extria
Extria

Reputation: 373

So after some time I managed to scrape all data from this website. So the main problem was, that website was embedded in JavaScript, so I could not scrape with Beautifulsoup. So I used selenium + beautifulsoup4, to convert page into html and scrape it.

from selenium import webdriver
import time
import os
from bs4 import BeautifulSoup
chrome_path = r"C:\Users\Desktop\chromedriver_win32\chromedriver.exe"
driver = webdriver.Chrome(chrome_path)
driver.get('http://www.politico.com/2016-election/primary/results/map/president/arizona/')
time.sleep(80)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(5)
html = driver.page_source
soup = BeautifulSoup(html,'html.parser')
for posts in soup.findAll('table',{'class':'results-table'}):
for tr in posts.findAll('tr'):
    popular = [td for td in tr.stripped_strings]
    print(popular)

Because it is dynamic webpage, I needed to simulate some things with selenium. Like scrolling page down. I used time.sleep(60) so the page could load. It loads really slowly, so I set time to 60s. Hope it helps someone.

Upvotes: 4

宏杰李
宏杰李

Reputation: 12168

import requests, bs4

r = requests.get('http://www.politico.com/2016-election/results/map/president/alabama/')
soup = bs4.BeautifulSoup(r.text, 'lxml')
contents = soup.find(class_='contrast-white')
for table in contents.find_all(class_='results-group'):
    title = table.find(class_='title').text
    for tr in table.find_all('tr'):
        _, name, percentage, popular = [td for td in tr.stripped_strings]
        print(title, name, percentage, popular)

out:

Autauga County D. Trump 73.4% 18,110
Autauga County H. Clinton 24.0% 5,908
Autauga County G. Johnson 2.2% 538
Autauga County J. Stein 0.4% 105
Baldwin County D. Trump 77.4% 72,780
Baldwin County H. Clinton 19.6% 18,409
Baldwin County G. Johnson 2.6% 2,448
Baldwin County J. Stein 0.5% 453
Barbour County D. Trump 52.3% 5,431
Barbour County H. Clinton 46.7% 4,848
Barbour County G. Johnson 0.9% 93
Barbour County J. Stein 0.2% 18
Bibb County D. Trump 77.0% 6,733
Bibb County H. Clinton 21.4% 1,874
Bibb County G. Johnson 1.4% 124
Bibb County J. Stein 0.2% 17
Blount County D. Trump 89.9% 22,808
Blount County H. Clinton 8.5% 2,150
Blount County G. Johnson 1.3% 337
Blount County J. Stein 0.4% 89
Bullock County H. Clinton 75.1% 3,530
Bullock County D. Trump 24.2% 1,139
Bullock County G. Johnson 0.5% 22
Bullock County J. Stein 0.2% 10
Butler County D. Trump 56.3% 4,891
Butler County H. Clinton 42.8% 3,716
Butler County G. Johnson 0.7% 65
Butler County J. Stein 0.1% 13
Calhoun County D. Trump 69.2% 32,803
Calhoun County H. Clinton 27.9% 13,197
Calhoun County G. Johnson 2.4% 1,114
Calhoun County J. Stein 0.6% 262
Chambers County D. Trump 56.6% 7,803
Chambers County H. Clinton 41.8% 5,763
Chambers County G. Johnson 1.2% 168
Chambers County J. Stein 0.3% 44
Cherokee County D. Trump 83.9% 8,809
Cherokee County H. Clinton 14.5% 1,524
Cherokee County G. Johnson 1.4% 145
Cherokee County J. Stein 0.2% 25

enter image description here The rest is empty, nothing in there.

Upvotes: 1

Related Questions