Reputation: 33
In User Guide.html, Input/output of tensorRT is need to use NCHW format.
What's NCHW fomat ?
How can I convert cv::MAT to NCHW format?
I run inference using TensorRT like below code.
Nothing error. But, It's not right result of output.
int batchSize = 1;
int size_of_single_input = 256 * 256 * 3 * sizeof(float);
int size_of_single_output = 100 * 1 * 1 * sizeof(float);
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();
CaffeParser parser;
auto blob_name_to_tensor = parser.parse(“deploy.prototxt”,
"sample.caffemodel",
*network,
DataType::kFLOAT);
network->markOutput(*blob_name_to_tensor->find("prob"));
builder->setMaxBatchSize(1);
builder->setMaxWorkspaceSize(1 << 30);
ICudaEngine* engine = builder->buildCudaEngine(*network);
IExecutionContext *context = engine->createExecutionContext();
int inputIndex = engine->getBindingIndex(INPUT_LAYER_NAME),
int outputIndex = engine->getBindingIndex(OUTPUT_LAYER_NAME);
cv::Mat input;
input = imread("./sample.jpg");
cvtColor(input, input, CV_BGR2RGB);
cv::resize(input, input, cv::Size(256, 256));
float output[OUTPUTSIZE];
void* buffers = malloc(engine->getNbBindings() * sizeof(void*));
cudaMalloc(&buffers[inputIndex], batchSize * size_of_single_input);
cudaMalloc(&buffers[outputIndex], batchSize * size_of_single_output);
cudaStream_t stream;
cudaStreamCreate(&stream);
cudaMemcpyAsync(buffers[inputIndex], (float *)input,
batchSize * size_of_single_input,
cudaMemcpyHostToDevice, stream);
context.enqueue(batchSize, buffers, stream, nullptr);
cudaMemcpyAsync(output, buffers[outputIndex],
batchSize * size_of_single_output,
cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
Upvotes: 3
Views: 10158
Reputation: 331
Use cv::dnn::blobFromImage
to build a NCHW blob from image:
Mat input_img = imread("/path/to/image");
Mat input_blob_nhwc = cv::dnn::blobFromImage(input_img);
In case you need an input of format NHWC, you can use transposeND
from opencv2/core.hpp
(OpenCV >= 4.6):
std::vector<int> order = {0, 2, 3, 1};
Mat input_blob_nhwc;
transposeND(input_blob_nhwc, order, input_blob_nhwc);
Upvotes: 3
Reputation: 3558
Here's a short a straightforward solution for NHWC to NCHW on the CPU:
static void hwc_to_chw(cv::InputArray src, cv::OutputArray dst) {
std::vector<cv::Mat> channels;
cv::split(src, channels);
// Stretch one-channel images to vector
for (auto &img : channels) {
img = img.reshape(1, 1);
}
// Concatenate three vectors to one
cv::hconcat( channels, dst );
}
Upvotes: 2
Reputation: 1285
This is another simple OpenCV-based answer:
cv::resize(img, img, input_size);
img.convertTo(img, CV_32FC3, 1.f / 255.f);
vector<float> chw_buffer(img.elemSize() * img.total());
std::vector<Mat> chw;
for (size_t n = 0; n < channels; ++n)
chw.emplace_back(Mat(input_size, CV_32FC1, chw_buffer.data() + n * input_width * input_height));
cv::split(img, chw);
cudaMemcpyAsync(gpu_buffers[inputIndex], chw_buffer.size(), cudaMemcpyHostToDevice, stream);
Upvotes: 0
Reputation: 1
// suppose all data types are int.
// size of mat is 256*256*3.
cv::Mat NCHW,NHWC;
std::vector<cv::Mat> channels;
split(NHWC, channels);
memcpy(NCHW.data,channels[0].data,256*256*sizeof(int));
memcpy(NCHW.data+256*256,channels[1].data,256*256*sizeof(int));
memcpy(NCHW.data+2*256*256,channels[2].data,256*256*sizeof(int));
Upvotes: -1
Reputation: 397
This code snippet does the conversion as explained by Ashwin
bool SampleUffSSD::processInput(const samplesCommon::BufferManager& buffers)
const int batchSize = mParams.batchSize;
// Available images
std::vector<std::string> imageList = {"test.jpeg"};
mPPMs.resize(batchSize);
assert(mPPMs.size() <= imageList.size());
for (int i = 0; i < batchSize; ++i)
{
readImage(locateFile(imageList[i], mParams.dataDirs), image);
}
float* hostDataBuffer = static_cast<float*>(buffers.getHostBuffer(mParams.inputTensorNames[0]));
// Host memory for input buffer
for (int i = 0, volImg = inputH * inputW; i < mParams.batchSize; ++i)
{
for (unsigned j = 0, volChl = inputH * inputW; j < inputH; ++j)
{
for( unsigned k = 0; k < inputW; ++ k)
{
cv::Vec3b bgr = image.at<cv::Vec3b>(j,k);
hostDataBuffer[i * volImg + 0 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[2]) - 1.0;
hostDataBuffer[i * volImg + 1 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[1]) - 1.0;
hostDataBuffer[i * volImg + 2 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[0]) - 1.0;
}
}
}
Upvotes: 0
Reputation: 78528
NCHW: For a 3 channel image, say BGR, pixels of the B channel are stored first, then the G channel and finally the R channel.
NHWC: For each pixel, its 3 colors are stored together in BGR order.
TensorRT requires your image data to be in NCHW order. But OpenCV reads it in NHWC order. You can write a simple function to read the data from NHWC to a buffer where you store them in NCHW order. Copy this buffer to device memory and pass to TensorRT.
You can find an example of this operation in the samples/sampleFasterRCNN/sampleFasterRCNN.cpp
file in your TensorRT installation. It reads a PPM file, which is also in NHWC order and then converts it to NCHW order and subtracts the mean values, both in a single step. You can modify that to suit your purpose.
Upvotes: 4