Reputation: 2109
I have a dataframe that looks like:
A B C
---------------
A1 B1 0.8
A1 B2 0.55
A1 B3 0.43
A2 B1 0.7
A2 B2 0.5
A2 B3 0.5
A3 B1 0.2
A3 B2 0.3
A3 B3 0.4
How do I convert the column 'C' to the relative rank(higher score->better rank) per column A? Expected Output:
A B Rank
---------------
A1 B1 1
A1 B2 2
A1 B3 3
A2 B1 1
A2 B2 2
A2 B3 2
A3 B1 3
A3 B2 2
A3 B3 1
The ultimate state I want to reach is to aggregate column B and store the ranks for each A:
Example:
B Ranks
B1 [1,1,3]
B2 [2,2,2]
B3 [3,2,1]
Upvotes: 27
Views: 68290
Reputation: 429
windowSpec = Window.partitionBy("col1").orderBy("col2")
ranked = demand.withColumn("col_rank", row_number().over(windowSpec))
ranked.show(1000)
Upvotes: 2
Reputation: 1712
Add rank:
from pyspark.sql.functions import *
from pyspark.sql.window import Window
ranked = df.withColumn(
"rank", dense_rank().over(Window.partitionBy("A").orderBy(desc("C"))))
Group by:
grouped = ranked.groupBy("B").agg(collect_list(struct("A", "rank")).alias("tmp"))
Sort and select:
grouped.select("B", sort_array("tmp")["rank"].alias("ranks"))
Tested with Spark 2.1.0.
Upvotes: 62