Reputation: 67
Assuming I have a data table
date | user_id | user_last_name | order_id | is_new_session
------------+------------+----------------+-----------+---------------
2014-09-01 | A | B | 1 | t
2014-09-01 | A | B | 5 | f
2014-09-02 | A | B | 8 | t
2014-09-01 | B | B | 2 | t
2014-09-02 | B | test | 3 | t
2014-09-03 | B | test | 4 | t
2014-09-04 | B | test | 6 | t
2014-09-04 | B | test | 7 | f
2014-09-05 | B | test | 9 | t
2014-09-05 | B | test | 10 | f
I want to get another column in Redshift which basically assigns session numbers to each users session. It starts at 1 for the first record for each user and as you move further down, if it encounters a true in the "is_new_session" column, it increments. Stays the same if it encounters a false. If it hits a new user, the value resets to 1. The ideal output for this table would be:
1
1
2
1
2
3
4
4
5
5
In my mind it's kind of the opposite of a SUM(1) over (Partition BY user_id, is_new_session ORDER BY user_id, date ASC)
Any ideas?
Thanks!
Upvotes: 1
Views: 239
Reputation: 1271003
I think you want an incremental sum:
select t.*,
sum(case when is_new_session then 1 else 0 end) over (partition by user_id order by date) as session_number
from t;
In Redshift, you might need the windowing clause:
select t.*,
sum(case when is_new_session then 1 else 0 end) over
(partition by user_id
order by date
rows between unbounded preceding and current row
) as session_number
from t;
Upvotes: 2