Reputation: 121
Consider the following dataframe (ordered by id and time):
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,32,1,2,6,17,24))
df
id event time
1 1 a 1
2 1 b 3
3 1 b 6
4 1 b 12
5 1 a 24
6 1 b 30
7 1 a 42
8 2 a 1
9 2 a 2
10 2 b 6
11 2 a 17
12 2 a 24
I want to count how many times a given sequence of events appears in each "id" group. Consider the following sequence with time constraints:
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
It means that event "a" can start at any time, event "b" must start no earlier than 2 and no later than 8 after event "a", another event "a" must start no earlier than 12 and no later than 18 after event "b". Some rules for creating sequences:
seq
can be constructed from rows 1, 3, and 5.seq
= rows 8, 10, and 11 was counted, then seq
= rows 8, 10, and 12 must not be counted.The expected result:
df1
id count
1 1 2
2 2 2
There are some related questions in R - Identify a sequence of row elements by groups in a dataframe and Finding rows in R dataframe where a column value follows a sequence.
Is it a way to solve the problem using "dplyr"?
Upvotes: 2
Views: 1729
Reputation: 76
I believe this is what you're looking for. It gives you the desired output. Note that there is a typo in your original question where you have a 32 instead of a 42 when you define the time
column in df
. I say this is a typo because it doesn't match your output immediately below the definition of df
. I changed the 32 to a 42 in the code below.
library(dplyr)
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,42,1,2,6,17,24))
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
df %>%
full_join(df,by='id',suffix=c('1','2')) %>%
full_join(df,by='id') %>%
rename(event3 = event, time3 = time) %>%
filter(event1 == seq[1] & event2 == seq[2] & event3 == seq[3]) %>%
filter(time1 %>% between(time_LB[1],time_UB[1])) %>%
filter((time2-time1) %>% between(time_LB[2],time_UB[2])) %>%
filter((time3-time2) %>% between(time_LB[3],time_UB[3])) %>%
group_by(id,time1) %>%
slice(1) %>% # slice 1 row for each unique id and time1 (so no duplicate time1s)
group_by(id) %>%
count()
Here's the output:
# A tibble: 2 x 2
id n
<dbl> <int>
1 1 2
2 2 2
Also, if you omit the last 2 parts of the dplyr pipe that do the counting (to see the sequences it is matching), you get the following sequences:
Source: local data frame [4 x 7]
Groups: id, time1 [4]
id event1 time1 event2 time2 event3 time3
<dbl> <fctr> <dbl> <fctr> <dbl> <fctr> <dbl>
1 1 a 1 b 6 a 24
2 1 a 24 b 30 a 42
3 2 a 1 b 6 a 24
4 2 a 2 b 6 a 24
EDIT IN RESPONSE TO COMMENT REGARDING GENERALIZING THIS: Yes it is possible to generalize this to arbitrary length sequences but requires some R voodoo. Most notably, note the use of Reduce
, which allows you to apply a common function on a list of objects as well as foreach
, which I'm borrowing from the foreach
package to do some arbitrary looping. Here's the code:
library(dplyr)
library(foreach)
df <- data.frame(id = c(rep(1,7),rep(2,5)), event = c("a","b","b","b","a","b","a","a","a","b","a","a"), time = c(1,3,6,12,24,30,42,1,2,6,17,24))
seq <- c("a", "b", "a")
time_LB <- c(0, 2, 12)
time_UB <- c(Inf, 8, 18)
multi_full_join = function(df1,df2) {full_join(df1,df2,by='id')}
df_list = foreach(i=1:length(seq)) %do% {df}
df2 = Reduce(multi_full_join,df_list)
names(df2)[grep('event',names(df2))] = paste0('event',seq_along(seq))
names(df2)[grep('time',names(df2))] = paste0('time',seq_along(seq))
df2 = df2 %>% mutate_if(is.factor,as.character)
df2 = df2 %>%
mutate(seq_string = Reduce(paste0,df2 %>% select(grep('event',names(df2))) %>% as.list)) %>%
filter(seq_string == paste0(seq,collapse=''))
time_diff = df2 %>% select(grep('time',names(df2))) %>%
t %>%
as.data.frame() %>%
lapply(diff) %>%
unlist %>% matrix(ncol=2,byrow=TRUE) %>%
as.data.frame
foreach(i=seq_along(time_diff),.combine=data.frame) %do%
{
time_diff[[i]] %>% between(time_LB[i+1],time_UB[i+1])
} %>%
Reduce(`&`,.) %>%
which %>%
slice(df2,.) %>%
filter(time1 %>% between(time_LB[1],time_UB[1])) %>% # deal with time1 bounds, which we skipped over earlier
group_by(id,time1) %>%
slice(1) # slice 1 row for each unique id and time1 (so no duplicate time1s)
This outputs the following:
Source: local data frame [4 x 8]
Groups: id, time1 [4]
id event1 time1 event2 time2 event3 time3 seq_string
<dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr>
1 1 a 1 b 6 a 24 aba
2 1 a 24 b 30 a 42 aba
3 2 a 1 b 6 a 24 aba
4 2 a 2 b 6 a 24 aba
If you want just the counts, you can group_by(id)
then count()
as in the original code snippet.
Upvotes: 3
Reputation: 1966
Perhaps it's easier to represent event sequences as strings and use regex:
df.str = lapply(split(df, df$id), function(d) {
z = rep('-', tail(d,1)$time); z[d$time] = as.character(d$event); z })
df.str = lapply(df.str, paste, collapse='')
# > df.str
# $`1`
# [1] "a-b--b-----b-----------a-----b-----------a"
#
# $`2`
# [1] "aa---b----------a------a"
df1 = lapply(df.str, function(s) length(gregexpr('(?=a.{1,7}b.{11,17}a)', s, perl=T)[[1]]))
> data.frame(id=names(df1), count=unlist(df1))
# id count
# 1 1 2
# 2 2 2
Upvotes: 2