Reputation: 1931
I am trying to detect faces using opencv detectmultiscale
. The number of faces in the output is HUGE (faces { size=1152921366050660864 }...)
although the input image has only one face. I tried to change the minNeighbors
value in order to eliminate the redundancy but nothing changed. I also tried to draw only 5 instances from faces
instead of looping on faces.size()
to see what is going on, and the output was drawing circles over and over on the same face.
I have the same problem as in here, they suggested to build the library by myself. Is this the only solution. I am not good at using Make
.
Here is the code, it's copy/paste from the openCV tutorial. I am using VS2015.
#include "stdafx.h"
#include <iostream>
#include <conio.h>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
using namespace std;
using namespace cv;
String face_cascade_name = "haarcascade_frontalface_default.xml";
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
String window_name = "Capture - Face detection";
void detectAndDisplay(Mat frame)
{
std::vector<Rect> faces;
Mat frame_gray;
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);
//-- Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 3, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
for (size_t i = 0; i < 5; i++)
{
Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);
Mat faceROI = frame_gray(faces[i]);
//std::vector<Rect> eyes;
////-- In each face, detect eyes
//eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
//for (size_t j = 0; j < eyes.size(); j++)
//{
// Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
// int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
// circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
//}
}
//-- Show what you got
imshow(window_name, frame);
}
int main()
{
//Load the cascades
if (!face_cascade.load(face_cascade_name)) { printf("--(!)Error loading face cascade\n"); return -1; };
if (!eyes_cascade.load(eyes_cascade_name)) { printf("--(!)Error loading eyes cascade\n"); return -1; };
Mat img, gray_img;
VideoCapture myVideo("head.mpg"); //open default camera
if (!myVideo.isOpened())
cout << "The Camera is not open";
while (myVideo.read(img)) {
detectAndDisplay(img);
if (waitKey(30) >= 0) break;
}
// system("pause");
return 0;
}
Upvotes: 1
Views: 1417
Reputation: 1931
I rebuilt opencv using cmake. You can find the step by step tutorial here. and it worked.
Upvotes: 1
Reputation: 1532
It seems what you need is Non-Maximum-Suppression, which would get rid of all the redundant detection.
I was surprised opencv doesn't seem to have it anywhere. Maybe you can find some inspiration here: http://code.opencv.org/attachments/994/nms.cpp?
Upvotes: 0